Определение понятия науки «Экология». Определение экология определение для детей 3 класса


Энциклопедия для детей. Экология.

Энциклопедия для детей / Гл. ред. В. А. Володин. – М.: Аванта +, 2001. – Т. 19: Экология. – 448 с.: ил.

По-гречески «экос» — «дом», «логос» — «наука». Экология — наука о доме, о месте жительства. Наука о доме — для мыши и журавля, для червя и ба­бочки, для сосны и ландыша. Дом этот очень большой: вся Земля является домом для существ, на ней живущих.

Экология возникла как раздел био­логии. Именно биологи были первы­ми, кто стал изучать взаимосвязи между существами, их сообществами и той средой, где они живут. Да и са­мо слово «экология» придумал один из великих натуралистов XIX в. — не­мецкий биолог Эрнст Геккель.

 

Шли годы, всё больше и больше учёных занимались изучением живых существ в их взаимосвязях между со­бой и с окружающим миром. Удалось открыть, а потом и чётко сформули­ровать многие экологические прин­ципы, закономерности. Это исклю­чительно важно, потому что, зная правила и законы природы, можно их использовать на благо человека. Мож­но, развивая промышленность, обес­печивая людей всем необходимым, вместе с тем сохранять природу, по­могать ей нести тяжёлую ношу, имя которой — человечество.

По существу, эта книга посвяще­на одной теме: как законы экологии работают внутри живой природы и во взаимоотношениях человека с природой. Что можно и нужно, а что нельзя и опасно делать в нашем боль­шом доме под названием Земля.

Современная экология давно пере­стала быть только биологической дисциплиной. В недрах биологии уда­лось сформулировать законы гораздо более общие, относящиеся не только к живой природе, но и к связям био­логических, физических, химических объектов и процессов с человеком и обществом. Именно эту их всеобщ­ность увидели государственные деяте­ли, а не только учёные. В 1970 г., ког­да состоялась первая экологическая конференция ООН в Стокгольме, эко­логия приобрела ещё и политиче­ское значение, стала частью мировой политики.

Экология включает в себя много самостоятельных разделов, направле­ний, часто принадлежащих к раз­ным научным дисциплинам. Она ди­намично развивается. Например, два-три десятилетия назад никто не слышал об экологии культуры, об этноэкологии, видеоэкологии и т. д.

Сила любого закона — в том, что никто не может безнаказанно его на­рушать. Нельзя нарушать и законы экологии. Сто лет компании, выпуска­ющие автомобили, продавали их и считали своё дело успешно сделан­ным. А теперь во многих странах либо разрабатываются, либо уже при­няты законы, обязывающие автомо­билестроителей (впрочем, как и мно­гих других товаропроизводителей) нести ответственность за свою про­дукцию и после того, как её переста­ли использовать. Автомобильные ком­пании теперь вынуждены налаживать сбор и захоронение отработавших свой срок автомашин. Сейчас в про­мышленной экологии разработана да­же концепция так называемого жиз­ненного цикла вещей: давая согласие на выпуск какого-то продукта, обще­ство должно ясно представлять, что будет с ним в дальнейшим, где закон­чится его существование и что при­дётся делать с его «останками». Ответ всегда один и тот же: надо наладить производство таким образом, чтобы отходы и конечные результаты (любая вещь в конце своего жизненного цик­ла) одного промышленного производ­ства стали сырьём для другого.

Если бы о законах экологии по­мнили строители советских атомных подводных лодок, то на побережье Ба­ренцева и Белого морей (на Севере) и на Камчатке не скопилось бы более 150 отслуживших свой срок проржа­вевших громадин, уничтожение и переработка которых сегодня превра­тились для России в одну из общена­циональных экологических проблем.

Если бы атомщики 40 лет назад бы­ли хоть чуточку более экологически ответственными, не упирались бы де­сятилетиями в небо мрачные мёртвые корпуса выведенных из строя старых атомных блоков под Екатеринбургом и Воронежем. Да и вообще, вся атом­ная промышленность развивалась бы по-другому, не допуская насыщения биосферы экологически опасными антропогенными (т. е. сделанными че­ловеком) радионуклидами. От некото­рых из них (таких, как криптон-85 или радиоактивный углерод) нельзя убе­речься сегодня даже на уединённом тихоокеанском атолле. И невозможно предугадать, как проявятся в биосфе­ре через тысячи и миллионы лет прак­тически вечные радионуклиды, со­зданные в чреве атомных реакторов, такие, как иод-129, плутоний-2 39 и -240, америций-241. Последствия их распространения для природы и человека пока никто не может пред­сказать. Именно игнорирование зако­нов экологии атомной индустрией — ещё недавно самой гордой и мощной отраслью промышленности — застав­ляет сегодня страну за страной отка­зываться от её услуг.

Настаёт время расплаты за эколо­гическое невежество и авантюризм и для космической промышленности. До сих пор люди достаточно беззабот­но запускают многотысячетонные ап­параты в атмосферу, дальний и ближ­ний космос и не думаем всерьёз об экологических последствиях этого сверхмощного вмешательства в дели­катнейшие химико-физические про­цессы. Человечеству может аукнуться загрязнение околоземного простран­ства — жаль, что тогда уже не будет в живых людей, бездумно создавших эти проблемы, и решать их придётся тем, кто только сегодня входит в жизнь.

Экология, экологический подход касается всего и вся. Действию зако­нов экологии в окружающем нас ми­ре и посвящена эта книга.

← Предыдущая Следующая →
 

www.libsoub.ru

Экология: основные термины и понятия

Экология (от греч. "ойкос" - жилище, "логос" - наука) - наука о закономерностях взаимоотношений организмов, видов, сообществ со средой обитания.Внешняя среда - все условия живой и неживой природы, при которых существует организм и которые прямо или косвенно влияют на состояние, развитие и размножение как отдельных организмов, так и популяций.Экологические факторы (от лат. "фактор" - причина, условие) - отдельные элементы среды, взаимодействующие с организмом.Абиотические факторы (от греч. "а" - отрицание, "биос" - жизнь) - элементы неживой природы: климатические (температура, влажность, свет), почвенные, орографические (рельеф).Биотические факторы - живые организмы, взаимодействующие и влияющие друг на друга.Антропогенный фактор {от греч. "антропос" - человек) - непосредственное воздействие человека на организмы или воздействия через изменение им среды обитания. Оптимальный фактор - наиболее благоприятная для организма интенсивность экологического фактора (света, температуры, воздуха, влажности, почвы и т. д.).Ограничивающий фактор - фактор среды, выходящий за пределы выносливости организма (за пределы допускаемого максимума или минимума): влага, свет, температура, пища и т. д.Предел выносливости - граница, за пределами которой существование организма невозможно (ледяная пустыня, горячий источник, верхние слои атмосферы). Для всех организмов и для каждого вида существуют свои границы по каждому экологическому фактору отдельно. Экологическая пластичность-степень выносливости организмов или их сообществ (биоценозов) к воздействию факторов среды.Климатические факторы - абиотические факторы среды, связанные с поступлением солнечной энергии, направлением ветров, соотношением влажности и температуры.Фотопериодизм (от греч. "фотос" - свет) - потребность организмов в периодической смене определенной продолжительности дня и ночи. Сезонный ритм - регулируемая фотопериодизмом реакция организмов на изменение времени года (при наступлении осеннего короткого дня опадают листья с деревьев, готовятся к перезимовке животные; при наступлении весеннего длинного дня начинается возобновление растений и восстановление жизненной активности животных).Биологические часы - реакция организмов на чередование в течение суток периода света и темноты определенной длительности (покой и активность у животных, суточные ритмы движения цветков и листьев у растений, ритмичность деления клеток, процесса фотосинтеза и т. д.).Зимняя спячка - приспособление животных к перенесению зимнего времени года (зимний сон). Анабиоз (от греч. "анабиозис"-оживление)-временное со- стояние организма, при котором жизненные процессы замедлены до минимума и отсутствуют все видимые признаки жизни (наблюдается у холоднокровных животных зимой и в жаркий период лета).Зимний покой - приспособительное свойство многолетнего растения, для которого характерно прекращение видимого роста и жизнедеятельности, отмирание надземных побегов у травянистых жизненных форм и опадение листьев у древесных и кустарниковых форм.Морозостойкость - способность организмов выносить низкие отрицательные температуры.

ЭКОЛОГИЧЕСКИЕ СИСТЕМЫ

Экологическая система - сообщество живых организмов и среды их обитания, составляющее единое целое на основе пищевых связей и способов получения энергии.Биогеоценоз (от греч. "биос" - жизнь, "гео" - земля, "це-ноз" - общий) - устойчивая саморегулирующаяся экологическая система, в которой органические компоненты неразрывно связаны с неорганическими.Биоценоз - сообщество растений и животных, населяющих одну территорию, взаимно связанных в цепи питания и влияющих друг на друга.Популяция (от франц. "популяцион" - население) - совокупность особей одного вида, занимающих определенный ареал, свободно скрещивающихся друг с другом, имеющих общее происхождение, генетическую основу и в той или иной степени изолированных от других популяций данного вида.Агроценоз (от греч. "агрос" - поле, "ценоз"-общий) -искусственно созданный человеком биоценоз. Он не способен длительно существовать без вмешательства человека, не обладает саморегуляцией и в то же время характеризуется высокой продуктивностью (урожайностью) одного или нескольких видов (сортов) растений либо пород животных.Продуценты (от лат. "продуцентис"-производящий)-зеленые растения, производители органического вещества.Консументы (от лат. "консумо"-употреблять, расходовать) - растительноядные и плотоядные животные, потребители органического вещества.Редуценты (от лат. "редуцере" - уменьшение, упрощение строения)-микроорганизмы, грибы-разрушители органических остатковЦепи питания- цепи взаимосвязанных видов, последовательно извлекающих органическое вещество и энергию из исходного пищевого вещества; каждое предыдущее звено является пищей для следующего.Пищевой уровень - одно звено в цепи питания, представленное продуцентами, консументами или редуцентами.Сети питания-сложные взаимоотношения в экологической системе, при которых разные компоненты потребляют разные объекты и сами служат пищей различным членам экосистемы.Правило экологической пирамиды - закономерность, согласно которой количество растительного вещества, служащего основой цепи питания, примерно в 10 раз больше, чем масса растительноядных животных, и каждый последующий пищевой уровень также имеет массу, в 10 раз меньшую.Саморегуляция в биогеоценозе-способность к восстановлению внутреннего равновесия после какого-либо природного или антропогенного влияния.Колебание численности популяции - сменяющее друг друга увеличение или уменьшение числа особей в популяции, которое происходит в связи с изменением сезона, колебаниями климатических условий, урожая кормов, стихийными бедствиями. Благодаря регулярному повторению колебание численности популяции называют также волнами жизни или популяционными волнами.Регулирование численности популяции - организация мероприятий по регулированию числа особей путем их истребления или разведения.Исчезающая популяция - популяция, численность видов которой снизилась до принятого минимума.Промысловая популяция - популяция, добыча особей которой экономически оправдана и не приводит к подрыву ее ресурсов.Перенаселенность популяции - временное состояние популяции, при котором количество особей превышает величину, соответствующую условиям нормального существования. Чаще всего связано со сменой биогеоценоза.Плотность жизни - количество особей на единицу площади или объема тон или иной среды.Саморегуляция численности - ограничивающее действие экологической системы, снижающее численность особей до средней нормы.Смена биогеоценозов - преемственное естественное развитие экологической системы, при котором одни биоценозы сменяются другими под влиянием природных факторов среды: на месте лесов образуются болота, на месте болот-луга. Смена биогеоценозов может быть вызвана также стихийными бедствиями (пожар, паводок, ветровал, массовое размножение вредителей) или влиянием человека (вырубка леса, осушение или орошение земель, земляные работы).Восстановление биоценоза - естественнее развитие устойчивой экологической системы, способной к самовосстановлению, которое проходит в несколько этапов на протяжении десятков лет (после вырубки или пожара еловый лес восстанавливается более чем через 100 лет)-Восстановление биоценоза искусственное - комплекс мероприятий, обеспечивающих возобновление прежнего биоценоза путем посева семян, посадки саженцев деревьев, возвращения исчезнувших животных.Фитоценоз (от греч. "фитон"-растение, "ценоз"-общий) растительное сообщество, исторически сложившееся в результате сочетания взаимодействующих растений на однородном участке территории. Его характеризуют определенный видовой состав, жизненные формы, ярусность (надземная и подземная), обилие (частота встречаемости видов), размещение, аспект (внешний вид), жизненность, сезонные изменения, развитие (смена сообществ) :

www.examen.ru

Определение понятия науки «Экология»

Определение понятия науки «Экология»

Экология – один из сравнительно молодых и бурно развивающихся разделов биологии – изучает взаимоотношения организмов между собой и со средой обитания. Взаимодействие организмов со средой рассматривает каждая биологическая наука. Экология затрагивает лишь ту его сторону, которая обусловливает развитие, размножение и выживание особей, структуру и динамику популяций, и сообществ.Экологическая трактовка необходима и при решении определенных задач в области физиологии, морфологии, систематики, биогеографии, поскольку любые биологические исследования в той или иной степени изучают жизнь животных и растений в природных условиях.Термин «экология» (от греч. oikos – жилище, место обитания и logos –наука) предложил Э. Геккель в 1866 г. для обозначения биологической науки, изучающей взаимоотношения животных с органической и неорганической средами..Экология – это наука, исследующая закономерности жизнедеятельности организмов (в любых её проявлениях, на всех уровнях интеграции) в их естественной среде обитания с учётом изменений, вносимых в среду деятельностью человека.Экология, как было отмечено, имеет свою специфику: объектом еёисследования служат не единичные особи, а группы особей, популяции (в целом или частично) и их сообщества, т.е. биологические макросистемы. Многообразие связей, формирующихся на уровне биологических макросистем, обусловливает разнообразие методов экологических исследований.

Экология в архитектуре развивается в основном в трёх направлениях:

  • экологически чистые материалы, которые не наносят вреда нашему организму,
  • тектонику самих сооружений, подсмотренную у природы.
  • новые технологии, позволяющие минимально нарушать целостность природной среды и использовать в качестве источников энергии природные явления (такие как ветер, морской прилив, солнечная активность…) или переработку отходов жизнедеятельности (биотопливо… )

Именно эти три принципа определили маломаштабность и камерность тех объектов, для которых они применимы. Виллы, отдельные небольшие сооружения общественного назначения. Ведь вы не встретите в природе например ракушку с 45 этажный дом. На этой базе появилось направление, названное органической архитектурой. Зародилось это направление в 30—50-е гг. Яркими представителями которого являются такие известные архитекторы, как Л. Салливен, Фрэнк Ллойд Райт, Алвар Аалто, Антонио Гауди… При этом Райт отвергал адресность к формам органической природы - «…органическая архитектура—это архитектура «изнутри наружу», в которой идеалом является целостность. Мы не употребляем слово «органик» в смысле «принадлежащий к растительному идя животному миру» – говорил Райт. В современной архитектуре появилось новое направление – бионика, для которого внешние и тектонические аналогии с природными объектами стали целевой задачей. Архитекторы, работающие в рамках этого направления Барт Принс, Хавьер Сеносиан, Кендрик Келлог, Рон Арад и другие.

Определение ключевого понятия «Экосистема»

Термин “экосистема” впервые был предложен английским экологом А. Тенсли в 1935 году. Но само представление об экосистеме возникло значительно раньше. Упоминание, о единстве организмов и среды, есть в самых ранних работах. Прежде, чем дать определение экосистемы, приведем понятие самого слова “система”.

Система – это реальный или мыслимый объект, целостные свойства которого, могут быть представлены как результат взаимодействия слагающих его частей. Основные свойства системы – это единство, целостность и взаимосвязи между ее компонентами.

Экосистема – совокупность совместно обитающих разных видов организмов и условий их существования, находящихся в закономерной взаимосвязи. Экосистема – это широкое понятие: луг, лес, река, океан, ствол гниющего дерева, биологические пруды очистки сточных вод.

Одним из видов экосистемы является биогеоценоз – это сугубо наземная экосистема, т.е. природная экосистема на поверхности Земли (река, луг, лес и т.д.). Любой биогеоценоз является экосистемой, но не всякая экосистема может являться биогеоценозом.

Биогеоценоз (в дальнейшем будем называть экосистема) состоит из экотопа и биоценоза. Экотоп – это совокупность абиотических факторов (почва, вода, атмосфера, климат и др.). Биоценоз – совокупность живых организмов (растительность, животные, микроорганизмы).

Главное свойство экосистемы – взаимосвязь и взаимозависимость всех ее компонентов.

Определение понятия «Биосфера»

Биосфе́ра (от др.-греч. βιος — жизнь и σφαῖρα — сфера, шар) — оболочка Земли, заселённая живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности; «плёнка жизни»; глобальная экосистема Земли.

Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Она проникает во всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает более 3 000 000 видов растений, животных, грибов и бактерий. Человек тоже является частью биосферы, его деятельность превосходит многие природные процессы и, как сказал В. И. Вернадский: «Человек становится могучей геологической силой».

Французский учёный-естествоиспытатель Жан Батист Ламарк в начале XIX в. впервые предложил по сути дела концепцию биосферы, ещё не введя даже самого термина. Термин «биосфера» был предложен австрийским геологом и палеонтологом Эдуардом Зюссом в 1875 году[1].

Целостное учение о биосфере создал биогеохимик и философ В. И. Вернадский. Он впервые отвёл живым организмам роль главнейшей преобразующей силы планеты Земля, учитывая их деятельность не только в настоящее время, но и в прошлом. Согласно В.И.Вернадскому биосфера – это оболочка земли, включающая как область распространения живого вещества, так и само живое существо. На Земле жизнь сосредоточена в гидросфере, литосфере и тропосфере. Нижняя граница атмосферы расположена на 2-3 км ниже поверхности материков и на 1-2 км ниже дна океана.

Верхняя граница биосферы – озоновый слой, который расположен в стратосфере на 20-25 км от поверхности Земли.

Существует и другое, более широкое определение: биосфера — область распространения жизни на космическом теле. При том, что существование жизни на других космических объектах, помимо Земли пока неизвестно, считается, что биосфера может распространяться на них в более скрытых областях, например, в литосферных полостях или в подлёдных океанах..

Определение понятия «Ноосфера»

"Ноос" в переводе с греческого означает разум, т.е. Ноосфера - это сфера разума. Понятие Ноосфера было введено в 1927 году французским ученым, математиком и философом Эдуардом Леруа. Соавтором понятия " Ноосфера" выступил друг Леруа палеонтолог и философ Тельяр де Шарден.

Знаменитый, крупнейший русский ученый - мыслитель Владимир Иванович Вернадский используя термин "Ноосфера" развил учение о переходе биосферы ( область проживания биологических форм жизни и сами формы ) в ноосферу.

Ноосфе́ра (греч. νόος — разум и σφαῖρα — шар) — сфера разума; сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера», «биотехносфера»).

Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. Согласно В. И. Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного».

Тема 3. «Сравнительная социально-экологическая оценка эффективности некоторых видов расселения».

Теория центральных мест Вальтера Кристаллера.

ТЕОРИЯ ЦЕНТРАЛЬНЫХ МЕСТ

В соответствии с данной теорией существует оптимальная каркасно-сетевая структура населённых пунктов, которая обеспечивает доступ к объектам сферы услуг, максимально быстрое перемещение между городами и эффективное управление территорией. Система населённых пунктов обладает определённой иерархией, число уровней которой прямо пропорционально социально-экономическому развитию территории. С ростом уровня иерархии населённый пункт предоставляет всё больший набор услуг всё большему числу нижестоящих поселений.

Система центральных мест (т. н. «сетка Кристаллера») имеет форму пчелиных сот (смежных шестиугольных ячеек). Центры некоторых ячеек являются узлами шестиугольной решётки более высокого порядка, центры её ячеек — узлами решётки ещё более высокого порядка и т. д. вплоть до наивысшего уровня с единственным центром.

Данная модель критикуется за нереальность по нескольким причинам. Во-первых, такое геометрически правильное встречается довольно редко, так как множество исторических, политических и географических факторов нарушают симметрию и строгую иерархию распределения; во-вторых, численное исследование эволюционной модели, основанной на идеях Кристаллера, показало, что симметричное распределение неустойчиво — достаточно малых флуктуаций, чтобы появились зоны с высокой концентрацией активности и вызвали отток населения и уменьшение активности в других зонах.

 

ТЕМА 5

Ресурсосбережение

Ресурсосбережение - это совокупность мер по бережливому и эффективному использованию фактов производства (капитала, земли, труда). Обеспечивается посредством использования ресурсосберегающих и энергосберегающих технологий; снижения фондоемкости и материалоемкости продукции; повышения производительности труда; сокращения затрат живого и овеществленного труда; повышения качества продукции; рационального применения труда менеджеров и маркетологов; использования выгод международного разделения труда и др. Способствует росту эффективности экономики, повышению ее конкурентоспособности.

Ресурсосбережение должно достигаться на всех этапах производства и использования ресурсов: рационализацией добычи природного сырья, топлива и др. (например, более полное извлечение нефти из пласта), максимальным использованием добытого ресурса, сведением к минимуму потерь при транспортировке и хранении; наиболее эффективным применением ресурса в процессе производства или непроизводственного потребления; выявлением, учетом и полным использованием вторичных ресурсов (образующихся в процессе их первичного потребления), прежде всего по прямому назначению—в качестве полноценного сырья, источника энергии или тепла и др., а также переработкой отходов и утилизацией отбросов.

Обеспечение ресурсосбережения — обязательное требование к технике, технологии, организации производства и непроизводственной деятельности, хозяйственному механизму. Экономное и бережливое отношение к ресурсам, многие из которых не возобнавляются, на всех стадиях цикла проектирования – реализации – эксплуатации: рекуперация тепла использованного подогретого воздуха, рециркуляция очищенного и повторно используемого воздуха, принудительное перераспределение воздуха по высоте помещения, регенерация воды, теплоизоляция магистралей с повышенной температурой, снижение материалоемкости, вырабатываемой и потребляемой мощности и габаритов, неодновременная работа энергопотребляющих устройств, внепиковое использование ресурсов, минимизация издержек и потерь, использование новейших разработок (светодиодные светильники, плавные регуляторы скорости вращения и мощности), оптимизация и автоматизация технологических процессов, учет и оперативный контроль расхода энергоресурсов, унификация технических и программных средств, экономия людских ресурсов.

 

 

Зеленый тренд

Зелёное строительство (также Экологическое строительство, Экостроительство) — это вид строительства и эксплуатации зданий, воздействие которых на окружающую среду минимально. Его целью является снижение уровня потребления энергетических и материальных ресурсов на протяжении всего жизненного цикла здания: от выбора участка по проектированию, строительству, эксплуатации, ремонту и сносу. Другой целью зелёного строительства является сохранение или повышение качества зданий и комфорта их внутренней среды. Эта практика расширяет и дополняет классическое строительное проектирование понятиями экономии, полезности, долговечности и комфорта. Хотя новые технологии по строительству зелёных зданий постоянно совершенствуются, основной целью данной идеи является сокращение общего влияния застройки на окружающую среду и человеческое здоровье, что достигается за счёт:

· эффективного использования энергии, воды и других ресурсов;

· внимания по поддержанию здоровья жителей и повышению эффективности работников;

· сокращения отходов, выбросов и других воздействий на окружающую среду.

· Схожий подход натурального строительства, имеющий меньший масштаб, заключается в использовании натуральных местных материалов.

 

Тема 7. Видеоэкология.

Далеко не все осведомлены о «загрязнении» визуальной среды, той среды, которую мы воспринимаем через орган зрения, или, говоря проще, того, на что мы смотрим глазами.

Визуальная (видимая) среда - та окружающая среда, которую мы воспринимаем через орган зрения, то есть та среда, которую мы видим глазами

Новое научное направление о визуальной среде как экологическом факторе было названо нами видеоэкологией.

Агрессивная видимая среда.

Близорукость.

Близорукость. Для многих стран она стала настоящим социальным бедствием. Близорукость является самым распространенным дефектом зрения.

В литературе накопилось достаточно фактов, указывающих на большую роль внешней среды в появлении близорукости. Так, М. Михалева, анализируя состояние учащихся 246 школ, установила, что колебания удельного веса близорукости в различных географических зонах составили от 3.3 до 24.34%. Различия, как видим, огромные - более чем в 7 раз. Нельзя сказать, что освещенность самих школ резко различалась, скорее, колебания ее были незначительными, в то время как визуальная среда разных географических зон могла различаться очень сильно. Следовательно, есть все основания связывать причину появления близорукости с визуальной средой в ее суммарном выражении. Там, где больше было близоруких детей, там хуже была визуальная среда, в частности, там больше было гомогенных и агрессивных визуальных полей.

В городских условиях близорукость встречается в 1.5-2 раза чаще, чем в сельской местности. У сельских школьников визуальная среда в суммарном её выражении ближе к естественной, чего нельзя сказать об урбанизированной визуальной среде, которая не только отличается от природной, но в большинстве случаев является противоестественной.

Именно в такой визуальной среде вынуждены долго находиться городские дети

 

Нелюбимый цвет.

Интересные исследования были проведены С. Габидулиной. Она просила своих испытуемых (143 человека) назвать какие районы Москвы «окрашены» в нелюбимые ими цвета. Оказалось, что 35% респондентов назвали нелюбимыми новые микрорайоны с их противоестественной видимой средой.

Заслуживают внимания исследования, посвященные сравнительной социальной оценке различных территорий Москвы, которые со второй половины 70-х годов проводит Ю.Г. Вешнинский. Представителями различных социальных групп давалась оценка данной территории по шести компонентам: эстетическая привлекательность, экологический и визуальный дискомфорт, криминогенная обстановка, торговля, транспорт, социальный состав. В итоге была составлена карта сравнительной социальной оценки районов Москвы.

Мы с большим интересом ознакомились с данными материалами. Чрезвычайно важно отметить тот факт, что два первых и самых важных показателя – «эстетическая привлекательность» и «визуальный дискомфорт» - это по существу оценка визуальной среды, так как и в первом, и во втором случаях суждения горожан были о видимой среде в местах проживания. Действительно, визуальная среда является одним из определяющих факторов качества жизни. На этой карте хорошо видно, что все новые микрорайоны Москвы являются непрестижными. Именно в этих районах изобилие агрессивных и гомогенных видимых полей, что порождает в массе своей противоестественную визуальную среду.

 

 

Городской стресс.

В процессе эволюции человек приспособился к спокойным ритмам сельской жизни. Бесконечные раздражители городской среды (среди которых визуальные стимулы явно преобладают), приводят к «городскому стрессу», определяемому как «переживание отрицательных, дискомфортных ощущений физиологического и психического характера». За счет противоестественной визуальной среды объем раздражителей начинает превосходить индивидуальные возможности человека, что грозит возникновением патологических состояний.

Помимо архитектуры, к числу сильных зрительных раздражителей следует отнести транспорт на улицах города. Дело в том, что все динамические раздражители оказывают большое влияние на сенсорные системы. В этом случае агрессивные поля, к примеру, большое число окон вагонов электрички, будут буквально «прочеркивать» по глазам горожан. Аналогичным образом воздействуют на зрение движущиеся автобусы, троллейбусы и автомашины.

Агрессивной визуальной средой является и многолюдье в городах. Толчея на улицах, автобусных остановках и станциях метро воспринимается как визуальная среда из большого числа одинаковых объектов. К примеру, спускаясь по эскалатору в утренние часы, человек видит только головы других пассажиров (из-за высокой плотности толпы всего человека при этом увидеть невозможно), которые он воспринимает как одинаковые шарообразные объекты. Многолюдье создает агрессивную видимую среду, которая может провоцировать горожан к агрессивным действиям.

В литературе обсуждается вопрос о стрессе, связанном с проживанием в домах повышенной этажности. Визуальная среда горожан проживающих выше 7-го этажа отличается от визуальной среды жителей нижних этажей. В частности, чем выше этаж, тем меньше видимая из окна среда напоминает природную. С 15-го этажа, к примеру, в поле зрения больше крыш, а также «агрессивных» многоэтажных «коробок».

Таким образом, наряду с шумом, вибрацией, запахами, загрязненностью, запыленностью, скученностью и т.п. свою лепту в городской стресс вносит и противоестественная визуальная среда города. Стрессы накладываются один на другой собой, что усугубляет их действие.

8.60. Синдром большого города.

Синдром «большого города» появился еще на рубеже XIX - XX веков, когда стали возникать крупные населенные пункты. У жителей мегаполисов стали развиваться неврозы. В ответ на это ученые уже тогда разработали такой метод, как психоанализ.

Почему появился этот синдром? Человек много веков жил по законам природы: вставал с рассветом, ложился с закатом.

С появлением электричества световой день изменился, режим дня стал другим. Появилась «ночная жизнь». Также жизнь работающих людей стала протекать согласно ритму машины. На заводах и фабриках появились вторая, третья смены. Этот неестественный, не соответствующий природе человека режим и явился одной из причин появления синдрома «большого города».

Вторая – это скопление значительного количества людей на сравнительно маленькой территории (толпы на центральных улицах города, многоэтажки, дома, построенные «окно в окно»). Каждому человеку необходимо свое, персональное пространство. А в городе, особенно крупном, мы живем на 1/3, часто даже на 1/10 этого нужного личного пространства (проявляется в ощущении тесноты и раздражения в отношении других людей – Авт.).

Скученность людей в городе приводит еще и к тому, что мы воспринимаем незнакомых как… деревья. Да, да, вспомните, что бывает, если с кем-то на улице или в общественном месте случится беда – мало кто из прохожих обращает внимание. А в маленьких городках отношение к людям совсем другое, более человечное. И вот это противоречие – не можем всем дарить свое внимание (на всех нас не хватает) и то, что такое равнодушие к окружающим вроде бы преступно – тоже может привести к неврозу.

Еще одна причина – городская архитектура. Непродуманный ландшафт мегаполиса, серые безобразные дома, отсутствие деревьям – все это приводит к серьезным психологическим нарушениям, в том числе к приступам необъяснимой агрессии.

Есть и другие факторы, усиливающие действие синдрома «большого города»: влияние СМИ, социальное положение человека, грязь и неухоженность города. А также - экономическая нестабильность в стране, трагедии национального масштаба, теракты.

 

8.61. Агрессивность человечества и увеличение психического расстройства.

На протяжении всей жизни, изо дня в день, человек находится в постоянном взаимодействии с окружающей средой, следствием является не только физическое, но и психоэмоциональное влияние визуальной среды на состояние человека. Но мало кто из граждан знает об этом факте. А между тем психологическое влияние на человека созданной им среды является очень значительным, наше самочувствие напрямую зависит не только от того, с чем мы находимся в непосредственном контакте, но и оттого, что находится в нашем окружении: жилые дома, общественные здания, промышленные сооружения и т.д. Как правило, городская среда обладает такими неблагоприятными факторами, как неразвитость ландшафтного благоустройства или совершенно неверное его применение, агрессивная и гомогенная видеосреда, неправильное сочетание цветов и материалов при отделке или реконструкции зданий.

анализ неблагоприятного визуального воздействия окружающей среды, на примере жителей города Уварово, расположенного в Тамбовской области

В результате анализа литературы, указанной в библиографическом списке, были сделаны следующие выводы:

- Визуальная среда оказывает значительное воздействие на состояние человека.Серые безжизненные тона зданий, однообразие их форм отрицательно влияют на состояние здоровья.

Большую опасность для психоэмоционального состояния представляет искусственная визуальная среда, в которую входят агрессивные и гомогенные поля.

Прямые линии и углы вызывают чувство агрессии и дискомфорта.

Правильное цветовое решение и внутренняя отделка положительно влияют на настроение и трудоспособность человека.

Развитый ландшафт и озеленение города создают комфортную среду для человеческого зрения.

Для предотвращения негативных последствий и создания комфортной визуальной среды необходимы также активные действия муниципальных властей. Такие действия должны включать в себя следующие мероприятия:

-Использование природоподобия архитектурных форм города, здания должны гармонично сочетаться с ландшафтом, соответствовать ему.

- Улучшение цветовой выразительности и своеобразия жилой застройки, путем правильного и гармоничного сочетания цветов.

- Необходимо уделять особое внимание применению натуральных материалов, таких как камень и дерево. Особенно в местах близкого контакта с людьми.

- Для создания комфортной среды внутри помещения, использовать приемы, обеспечивающие композиционное единство внутреннего пространства, ощущение соразмерности элементов.

- Уменьшение действия агрессивных и гомогенных полей, за счет использования пространственных форм.

-Использование озеленения - один из наиболее простых и доступных способов.

- Совершенствование всех видов городского освещения, использование иллюминации с целью улучшения эстетического восприятия городской среды в вечернее время.

9.62. Энергоэффективный дом.

Энергоэффективные дома можно считать самыми близкими родственниками экологических, и с них почти можно начинать современную историю экодомостроения. Несмотря на то что энергоэффективность далеко не исчерпывает всех сторон экологического дома, она является одним из главных свойств экологического дома и степннь его энергоэффективности является одной из главных его характеристик.

Дом представляет собой единую теплоэнергетическую систему с проходящими через нее потоками различных энергий.

энергоэффективный дом начинается со снижения теплопотребления.

итопительное теплопотреоление снижают по трем основным направлениям, первые два из которых относят к пассивныммероприятиям, третье — к активным:

• усилением теплоизоляции внешней оболочки здания

• снижением тепловых потерь с вентилируемым воздухом

• использованием энергии окружающей среды

Усиление теплоизоляции внешнего контура здания требует не только усиления теплоизоляции, но и минимизациимостиков холода, неизбежных в любой строительной конструкции. Утепление различным образом выполняется для стен,крыш, перекрытий, фундаментов и прозрачных конструкций т.е. окон.

Вентиляция.На вентиляции в существующих домах теряется ориентировочно около трети всего тепла. Исходя из этого естественно было бы ее сократить , однако при этом могут ухудшиться качество внутреннего воздуха, что также недопустимо. Анализ показыват, что возможно проведение системы различного характера мероприятий нацеленных на замедление или компенсацию ухудшения гигиенических показателей внутреннего воздуха. При этом без ухудшения качества внутреннего воздуха окажется возможным сократить объемы вентиляции и вместе с тем потери тепла. Потери тепла на вентиляцию могут быть сокращены также применением искусственных сосредоточенных приточно-вытяжных систем вентиляции с теплообменниками или тепловыми насосами.

Система терморегулирования .Вместо системы отопления в хорошо изолированном доме для компенсации в экстремально холодные периоды достаточно иметь маломощную систему терморегулирования. Действовать она будет эпизодическии выполнена может быть по лучистому типу.

Тепловые гелиоприемники.Тепловые солнечные коллекторы превращают энергию солнечного излучения непосредственно в тепло. Достоинством тепловых солнечных преобразователей является высокий КПД. У современных коллекторов он достигает 45 - 60%. Эффективность термальных гелиоприемников повышается если они снабжены теми или иными концентрирующими излучение зеркальными поверхностями. Весьма перспективными для экодомов обещают стать плоские солнечные элементы с линейными концентраторами излучения - фоконы. Однако потребности в низкотемпературном тепле летом в доме невелики, поскольку в связи с трудностью его длительного хранения, до зимы, когда оно главным образом нужно, его сохранить сложно. Этим объясняется относительно ограниченное их использование в энергоэффективных домах.

В зависимости от этого тепловые коллекторы разделяются на плоские и концентраторные. Плоские коллекторы наиболее просты и дешевы, однако дают лишь низкотемпературное тепло, сфера применения которого в домовом энергохозяйстве ограничена. Концентраторные коллекторы более эффективны, но достаточно сложны в т.ч. в эксплуатации, и дороги из-за необходимости поворотных систем слежения за солнцем. Поэтому их использование в автономной энергосистеме жилищ пока проблематично.

Промежуточное положение занимают появившиеся сравнительно недавно фоконы - плоские солнечные элементы составленные из полос линейных концентраторов лучистой энергии. Концентраторы в сечении имеют V - образную форму (плоскую или параболоидную, последняя дороже, но эффективнее) которые в широком диапазоне углов нахождения солнца концентрируют всю или большую часть излучения в своей сужающейся части где располагаются теплосъемные трубки. Фоконы совмещают в себе преимущества плоских и концентраторных коллекторов - они не требуют строгой ориентации на солнце и в тоже время позволяют получить более высокую температуру теплоносителя, что увеличивает их эффективность.

Теплоулавливающие стены .В последнее время стали популярны стены с прозрачной теплоизоляцией которые хорошо улавливают солнечное тепло и передают его внутрь зданий. Они представляют интерес для домов переходного типа, для экологических домов эффективнее использовать все же солнечные батареи.

Размещение гелиоколлекторов.При отсутствии затеняющих сооружений вся площадь восточных южных и западных фасадов дома, за исключением окон, может быть занята солнечными коллекторами. В первую очередь это относится как к наименее затеняемым поверхностям крыш, всвязи с чем уже появился термин "энергетическая крыша". Сейчас все больше появляется в продаже солнечных батарей выполненных как кровельные элементы.

Ветровые энергоисточники.Ветровая энергия являясь разновидностью солнечной используется человеком с древнейших времен. Особенную ценность ей придает то, что во многих регионах она имеет зимний максимум, компенсируя недостаток прямой солнечной энергии. В некоторых районах ветроресурсы оказываются столь велики что ими можно удовлетворить энергопотребности дома с избытком. Избыточная энергия может использоваться для производственных целей или продаваться во внешнюю сеть. Стоимость ветроэнергии в некоторых случаях уже сейчас оказывается ниже стоимости энергии полученной на тепловых станциях.

На сегодня наиболее перспективным способом длительного сохранения энергии в доме представляется хранение ее в виде водорода, получаемого гидролизом воды, в металлгидридных аккумуляторах. Преимущества последних заключаются в низкой взрывоопасности и малом объеме. Обратное преобразование водорода в энергию (электрическую и тепловую) возможно с помощью топливных элементов. По ценовым критериям водородный энергетический цикл для дома в ближайшее время обещает стать вполне доступным.

Пристроенная теплица Пристроенная к дому с южной стороны теплица может выполнять много полезных функций - служить местом отдыха, игровой площадкой для детей, оранжереей и т.д. Одновременно она является одним из самых дешевых и эффективных солнцеулавливающих устройств, что делает ее наличие в экодоме желательным.

По степени энергоэффективности дома можно классифицировать следующим образом. Дома переходного типа - потребляют на отопление значительно меньше энергии чем в среднестатистические дома. Далее следуют Дома нулевого теплопотребления - утепленные настолько хорошо, что им не нужна система отопления. За ними следуют энергоавтономные или энергосамодостаточные дома удоалетворяющие все свои энергетические потребности за счет индивидуальных или коллективных ВИЭ и тем самым не получпющие энергии извне. Наконец возможны и энергоизбыточные дома, экспортирующие энергию. Примеры таких домов уже существуют.

Вращающиеся дома.На протяжении тысячелетий дома строились статичными, а их ориентация определялась традициями и метными условиями. Один из способов повышения энергоэффективности дома состоит в том. чтобы южные фасады делать сувеличенным остеклением и солнечными батареями, северные — с минимальным остеклением и наиболее утепленнымистенами. Поворотные устройства для солнечных батарей установленных на домах практически не применяются, однако,существуют целиком вращающиеся дома.

Такой дом возводится на металлической вращающейся основе, которая стоит на опорах, и может быть сооружен практически из любого материала — бетона, дерева, стекла или стали. Основание для узла вращения заглубляется на ту же величину, что и обычный фундамент. Поворотный механизм не требует регулярного обслуживания, а толькопериодических осмотров, как и ходовая часть автомобиля. Дополнительным достоинством вращающихся домов является их сейсмоустойчивость.

Обычно предлагаемые дома могут делать один полный поворот, после чего должны ны совершить круг обратного вращения.

Энергия биомассы.Существуют породы быстрорастущих однолетних и многолетних растенийкоторые уже сейчас рентабельно выращивать для топливных нужд. Важно то чтопри сжигании специально выращенной биомассы в атмосферу не попадает

дополнительный углекислый газ, поскольку в процессе роста такое же

количество его поглощается. Таким образом суммарное количество двуокиси

углерода относящейся к парниковым газам, в атмосфере не увеличивается и тем

самым не вносится вклад в глобальное потепление.

Тепло окружающей среды. Можно отапливать дома отбирая тепло от холодного воздуха, воды, льдаили грунта. Это может быть осуществлено с помощью тепловых насосов -устройств в принципе идентичных обычному холодильнику, с той лишь разницейчто полезным эффектом является тепло выделяемое радиатором. На приводтеплонасоса затрачивается электрическая энергия, однако получаемая тепловаяэнергия оказывается в 3-5 раз больше. Отсюда в частности следуетнерациональность прямого использования электроэнергии для этопления. Использование теплонасосов для отопления зданий является выгодным, вомногих странах имеются действуют программы стимулирующие использоаниетеплонасосов имеющие государственную поддержку.

 

 

Водоэффективный дом.

Современному жилищу, помимо энергии, требуется извне холодная и горячая вода, атмосферный воздух, потребительские товары, информация. В свою очередь он производит отходы, главными из которых являются сточные воды и твердые бытовые отходы. Таким образом, дом оказывается задающим звеном и узловым пунктом крупных ресурсных циклов. Они так же, как энергетический, требуют оптимизации.

В экодоме целесообразно использовать схемы раздельного и повторного водоснабжения, водосберегающую сантехнику, сбор дождевой воды, раздельный сбор и очистку черных и серых стоков.

Забираемую из природных источников воду в настоящее время, как правило, необходимо очищать. Нет смысла использовать хорошо очищенную воду питьевых стандартов для всех бытовых целей, как это делается сейчас. Разумнее использовать два-три стандарта качества воды для разных видов использования, т.е. ввести дифференциальную водоподготовку. Необходимая дополнительная прокладка трубопроводов, в силу близости устройств водоподготовки, оправдает себя. Таким образом, небольшие коллективные или индивидуальные системы водоснабжения без труда могут быть выполнены по раздельной схеме, когда тщательно очищается только питьевая вода, дополнительно подаются воды меньших степеней очистки для тех или иных хозяйственных нужд. Способы очистки воды зависят от ее конкретного состава и должны подбираться индивидуально.

В качестве одного из источников водоснабжения может быть использована дождевая вода. Для того чтобы при сборе в нее не вносились дополнительные загрязнения, кровля не должна содержать токсичных покрытий, например оцинкованного железа. Может оказаться, что дождевая вода удовлетворяет поливным стандартам, в таком случае ее не потребуется очищать. Кроме того, использование дождевой воды приближает водный баланс местности к естественному, тем самым, уменьшая риск нарушения водного баланса местного ландшафта.

Горячую воду для бытовых целей целесообразно получать в теплый период от солнечных водонагревателей, в холодный - дополнительно с помощью теплонасосов и сбросного тепла электрогенератора и других энергоприборов.

 



infopedia.su

Научно-исследовательская работа по экологии: "Определение состояния атмосферы"

Разделы: Экология

Справочный материал. Воздух-смесь газов

Основные составные части воздуха можно подразделить на три группы: постоянные, переменные и случайные.

Содержание постоянных веществ практически не меняется в любой порции сухого воздуха. Вторую группу составляют углекислый газ и водяной пар. Колебания содержания водяного пара в объяснениях не нуждаются. Непостоянное содержание углекислого газа обусловлено неравномерностью его поглощения из воздуха растительностью в зависимости от интенсивности этой растительности, времени года, суток и т.д., а также деятельностью человека, ежегодно сжигающего миллиарды тонн углесодержащих веществ.

Содержание случайных частей воздуха целиком обусловлено местными причинами. Это и природные явления, например, деятельность вулканов и грозы, и деятельность человека, которая стала главным источником случайных примесей в настоящее время.

Составные части воздуха % содержание от объема
постоянные:  
азот 78%
кислород 21%
инертные газы 1%
переменные:  
углекислый газ до 0,04%
водяной пар до 3%
случайные:  
оксиды серы непостоянно
оксиды азота непостоянно
монооксид углерода непостоянно
твердые частицы непостоянно

(Диаграмма №1.)

Откуда в биосфере – углекислый газ

Наряду с кислородом углекислый газ играет очень важную роль в процессах, происходящих в биосфере. Углекислый газ (диоксид углерода) – это вещество, существующее обычно в газообразном состоянии. В воздухе всегда содержится небольшое количество углекислого газа – около 0,4 литра в 1000 литрах воздуха. Большая часть углекислого газа поступает в воздух в результате жизнедеятельности различных организмов, населяющих нашу планету.

Некоторая часть углекислоты поступает в атмосферу в результате таких естественных процессов, происходящих на планете, как вулканическая деятельность. Значительная часть углекислоты в настоящее время появляется в воздухе вследствие сжигания органического топлива, содержащего углерода ( древесина, каменный уголь, нефтепродукты, природный газ ).

Для нормальной деятельности человеку необходимо незначительное количество углекислого газа. Он имеет важное значение в регуляции таких важнейших процессов, как дыхание и кровообращение, и некоторые другие функции организма. Но превышение концентрации углекислого газа в воздухе, а затем и в крови человека может причинить вред и даже стать причиной смерти.

Мы получаем кислород из воздуха, которым дышим. Кислород поступает в кровь. Там он соединяется с питательными веществами и в результате химических реакций превращается в углекислый газ, который возвращается в легкие и выдыхается. Точно так же процесс образования углекислоты происходит в организме животных.

Растения также испытывают жизненную необходимость в углекислом газе. Они поглощают углекислый газ из воздуха через поры в листьях. В клетках растений он соединяется с водой, а затем с помощью энергии солнечного света эти вещества превращаются в углеводы и другие вещества, необходимые растениям для нормальной жизнедеятельности. Растение при этом выделяет кислород.

Растения выделяют кислород и поглощают углекислый газ. Люди и животные, наоборот, вдыхают кислород, а выдыхают углекислый газ. Таким образом, поддерживается относительно постоянное количество кислорода и углекислого газа в воздухе.

В последнее время вследствие сжигания большого количества топлива в промышленности и на транспорте происходит нарушение теплового баланса на планете, так как углекислый газ относится к парниковым газам.

Загрязнение воздушной среды

Роль атмосферы в природных процессах огромна. Наличие вокруг земного шара атмосферы определяет общий тепловой режим поверхности нашей планеты, защищает ее от вредных космического и ультрафиолетового излучений. Циркуляция атмосферы оказывает влияние на местные климатические условия, а через них – на режим рек, почвенно-растительный покров и на процессы рельефообразования. Чистый воздух необходим для жизни человека, растений и животных. Атмосферные загрязнения оказывают отрицательное влияние на живые организмы, что приводит к сокращению численности, видового разнообразия животных и растений, заболеваемости человека.

Источников антропогенного характера, вызывающих загрязнение атмосферы, а также серьезные нарушения экологического равновесия в биосфере,– множество. Однако самыми значительными из них являются два: транспорт и индустрия.

При работе двигателей на этилированном бензине в выхлопных газах содержатся оксиды азота, соединения свинца (количество свинца в воздухе находится в прямой зависимости от интенсивности движения и может достигать 4-12 мг/м3). При работе на серосодержащем топливе в выхлопах появляется диоксид серы. Тысяча автомобилей с карбюраторным двигателем в день выбрасывает около 3т газа , 100 кг оксидов азота, 500 кг продуктов неполного сгорания бензина.

При сжигании горючих ископаемых (угля, нефти, газа) большая часть содержащейся в них серы превращается в диоксид серы. От индустрии в атмосферу попадают различные загрязнители, прежде всего, это диоксид серы, оксиды углерода, аммиак, сероводород, фенол, хлор, углеводороды, сероуглерод, фторсодержащие соединения, серная кислота, аэрозольная пыль, тяжелые металлы, радиоактивные соединения и многие другие вредные вещества. Кислотные оксиды вместе с дождем могут выпадать на поверхность земли, воздействия на почву, растительность и живые организмы.

Помимо выбросов химических веществ, серьезными загрязнениями атмосферы являются выбросы большого количества водяного пара, шум, электромагнитное излучение, тепловое загрязнение, в том числе выбросы большого количества нагретого газа.

На занятиях творческого объединения “Антропоген” мы решили исследовать чистоту воздуха нашего поселка.

Оценку состояния воздушной среды проводили в условиях школы с использованием биоиндикационных, физических и химических методов исследования. Из бионикационных методов мы использовали определение степени чистоты воздуха по хвое сосны обыкновенной и лишайникам. Кроме того, чистоту воздуха можно определить по химическому анализу снегового покрова, кислотности дождевых осадков и запыленности воздуха.

Биоиндикационные методы

Сильнейшее антропогенное воздействие на фитоценозы оказывают загрязняющие вещества в окружающем воздухе, такие как диоксид серы, оксиды азота, углеводороды и др. Среди них наиболее типичным является диоксид серы, образующийся при сгорании серосодержащего топлива (работа предприятий теплоэнергетики, котельных, отопительных печей населения, а также транспорта, особенно дизельного.)

Устойчивость растений к диоксиду серы различна. Даже незначительное наличие диоксида серы в воздухе хорошо диагностируется лишайниками – сначала исчезают кустистые, потом листовые и, наконец, накипные формы.

Из высших растений повышенную чувствительность к оксиду серы имеют хвойные (кедр, ель, сосна). Устойчивые к загрязнению: бересклет, бирючина, клен ясенелистный.

Для ряда растений установлены границы их жизнедеятельности и предельно допустимые концентрации диоксида серы в воздухе.

Величины ПДК (мг/куб.м) для:

– тимофеевки луговой, сирени обыкновенной – 0,2;

– барбариса – 0,5;

– овсяницы луговой, смородины золотистой – 1,0;

– клена ясенелистного – 2,0.

Чувствительны к содержанию в воздухе других загрязнителей (например: хлороводорода, фтороводорода) такие растения, как пшеница, кукуруза, пихта, ель, земляника садовая, береза бородавчатая.

Стойкими к содержанию фтороводорода в воздухе являются хлопчатник, одуванчик, картофель, роза, табак, томаты, виноград, а к хлороводороду – крестоцветные, зонтичные, тыквенные, гераневые, гвоздичные, вересковые, сложноцветные.

Биоиндикация загрязнения воздуха по состоянию хвои сосны

Считается, что для условий лесной полосы России наиболее чувствительны к загрязнению воздуха сосновые леса. Это обусловливает выбор сосны как важнейшего индикатора антропогенного влияния, принимаемого настоящее время за “эталон биодиагностики”. Информативными по техногенному загрязнению являются морфологические анатомические изменения, а также продолжительность жизни хвои. При хроническом загрязнении лесов диоксидом серы наблюдаются повреждения и преждевременное опадение хвои сосны. В зоне техногенного загрязнения отмечается снижение массы хвои 30-60% в сравнении с контрольными участками. Для мониторинга загрязнения атмосферы мы выбрали участки соснового леса разноудалённые от обогатительной фабрики, как основного загрязнителя воздуха. На каждом участке взяли пробы хвои и проанализировали.

Определение состояния хвои сосны обыкновенной для оценки загрязненности атмосферы

В лесных незагрязненных экосистемах основная масса хвои сосны здорова, не имеет повреждений, и лишь малая часть хвоинок имеет светло-зелёные пятна и некротические точки микроскопических размеров, равномерно рассеянные по всей поверхности. В загрязнённой атмосфере появляются повреждения, и снижается продолжительность жизни хвои сосны.

Методика индикации чистоты атмосферы по хвое сосны стоит в следующем. С нескольких боковых побегов в средней части кроны 5-10 деревьев сосны в 15–20–летнем возрасте мы отобрали 200– 300 пар хвоинок второго и третьего года жизни.

Всю хвою разделили на три части (неповреждённая хвоя, хвоя с пятнами и хвоя с признаками усыхания), и подсчитали количество хвоинок в каждой группе. Данные занесли в рабочую таблицу. Все пробы брались в течение одного месяца. Обработанные данные вносятся в таблицу экопаспорта.

По этим результатам мы можем судить о загрязнении воздуха на территории посёлка и можем проследить изменения загрязнения атмосферы в дальнейшем.

1            2              3              4             5             6

1 – хвоинки без пятен; 2, 3 – хвоинки с черными и желтыми пятнами; 4,5,6 – хвоинки с усыханием.

Таблица

Определение состояния хвои сосны обыкновенной для оценки загрязненности атмосферы поселка Мундыбаш

Повреждение и усыхание хвоинок

Номера участков

1

%

2

%

3

%

4

%

Общее число обследованных хвоинок

300

100

300

100

300

100

300

100

Количество не поврежденных хвоинок

257

85,7

182

60,7

97

32,3

86

28,66667

Количество хвоинок с пятнами

22

7,33

45

15

96

32

108

36

Количество хвоинок с усыханием

21

7

73

24,3

107

35,7

106

35,33333

Диаграмма №2.

1 участок – контрольный ( природный ландшафт) – район б/п Красный луч.

2 участок – сосновые посадки к югу от поселка.

3 участок – сосновые посадки в конце улицы Буденного.

4 участок – сосенки на территории поселка.

Из диаграммы и таблицы можно пронаблюдать зависимость качества хвои от чистоты воздуха по мере удаленности от поселка.

Почему грязный воздух губит деревья?

Во всем мире загрязнение воздуха, вызванное сжигаемого топлива, наносит невосполнимый ущерб хвойным лесам. Сильно пострадали, так как менее устойчивы по сравнению с лиственными, хвойные массивы в России и Скандинавии, Германии и Соединенных Штатах. Гибнут ранее высокопродуктивные леса, и в этом не виноваты ни болезни, ни вредители. Главная причина гибели деревьев – загрязнение воздуха и связанные с ним кислотные дожди и накопление озона в приземных слоях атмосферы. Ученые установили, что кислотные дожди и озон оказывают неблагоприятное влияние на деревья двояким способом. Во – первых, они непосредственно разрушают хлорофилл в клетках хвои и, нарушая фотосинтез, ослабляют деревья. Во– вторых, эти загрязнители способствуют вымыванию из почвы важных для растений питательных составляющих – магния, калия и кальция. Это еще больше ухудшает положение ослабленного дерева. Признаки ухудшения питания можно обнаружить, если внимательно присмотреться к городским соснам. Пожелтение хвои и усыхание вершин – верный признак тяжелого недуга, вызванного загрязнением.

Ослабленные деревья не могут сопротивляться другим неблагоприятным факторам, с которыми успешно справлялись до этого. Нашествие вредителей, распространение паразитических грибов, засуха или сильные морозы приводят к гибели деревьев. Смерть доминирующих видов отражается на всех остальных элементах экосистемы. Страдают и гибнут многие связанные с хвойными деревьями животные и растения. Экосистема леса в целом теряет устойчивость и погибает.

Как и все живые организмы, растения леса дышат, поглощая кислород и выделяя углекислый газ. Но днем, на свету, в процессе фотосинтеза происходит и противоположное явление – растения поглощают углекислый газ и выделяют кислород.

В солнечный день 1га леса поглощает из воздуха в среднем 120 – 280 кг углекислого газа и выделяет 180 – 280 кг кислорода.

За один час лесная растительность на площади в 1 га поглощает 8 кг углекислого газа – количество, которое выдыхают за это же время 200 человек.

Количество поглощаемого углекислого газа и выделяемого кислорода у различных видов деревьев различно.

Наибольший % углекислого газа поглощают дуб и тополь, наименьший – ель. (Этот вывод мы сделали, глядя на схему.)

Влияние загрязнения воздуха на состояние лишайников

Лишайники способны долгое время пребывать в сухом, почти обезвоженном состоянии, когда их влажность составляет от 2 до 10 % сухой массы. При этом они не погибают, а лишь приостанавливают все жизненные процессы до первого увлажнения. Погрузившись в такой “анабиоз”, лишайники могут выдерживать сильное солнечное облучение, сильное нагревание и охлаждение.

В связи с тем, что лишайники поглощают воду всей поверхностью тела в основном из атмосферных осадков и отчасти из водяных паров, влажность слоевищ непостоянна и зависит от влажности окружающей среды. Таким образом, поступление воды в лишайники происходит, в отличие от высших растений, по физическим, а не по физиологическим законам. Недаром слоевище лишайников часто сравнивают с фильтровальной бумагой.

Минеральные вещества в виде водных растворов поступают в слоевище лишайника из почвы горных пород, коры деревьев. Однако гораздо большее количество химических элементов лишайники получают из атмосферы с осадками и пылью. Поглощение элементов из дождевой воды идет очень быстро и сопровождается их кон центрированием. При повышении концентрации соединений металлов в воздухе резко возрастает их содержание в слоевищах лишайников, причем в накоплении металлов они далеко опережают сосудистые растения. В лесу, где осадки проходят сквозь кроны деревьев и стекают со стволов, лишайники гораздо богаче минеральными и органическими веществами, чем на открытых местах. Особенно много минеральных и органических веществ попадает в тело эпифитных лишайников, растущих на стволах деревьев. Эти растения используются для наблюдения за распространением в атмосфере более 30 элементов – лития, натрия, калия, магния, кальция, стронция, алюминия, титана, ванадия, хрома, марганца, железа, никеля, меди, цинка, галлия, кадмия, свинца, ртути, иттрия, урана, фтора, йода, серы, мышьяка, селена и д.р.

Многочисленные исследования в районах промышленных объектов, на заводских и прилегающих к ним территориях показывают прямую зависимость между загрязнением атмосферы и сокращением численности определенных видов лишайников. Особая чувствительность лишайников объясняется тем, что они не могут выделять в среду поглощенные токсические вещества, которые вызывают физиологические нарушения и морфологические изменения.

По мере приближения к источнику загрязнения слоевища лишайников становятся толстыми, компактными и почти совсем утрачивают плодовые тела. Дальнейшее загрязнение атмосферы приводит к тому, что лопасти лишайников окрашиваются в беловатый, коричневый или фиолетовый, цвет, их талломы сморщиваются и они погибают. Изучение лишайниковой флоры в населенных пунктах показывает, что состояние окружающей среды оказывает существенное влияние на развитие лишайников. По их видовому составу и встречаемости можно судить о степени загрязнения воздуха.

Наиболее резко лишайники реагируют на диоксид серы. Концентрация диоксида серы 0,5 мг/м3 губительна для всех видов лишайников. На территориях, где средняя концентрация SO2 превышает 0,3 мг/м3, лишайники практически отсутствуют. В районах со средними концентрациями SO от 0,3 до 0,05 мг/м3 оп мере удаления от источника загрязнения сначала появляются накипные лишайники, затем листовые (фасция, леканора, ксантория) при концентрации менее 0,05 мг/м3 появляются кустистые лишайники (уснея, алектория, анаптихия,) и некоторые листовые (лобария, пармелия).

На частоту встречаемости лишайников влияет кислотность субстрата. На коре, имеющей нейтральную реакцию, лишайника чувствуют себя лучше, чем на кислом субстрате. Этим объясняется различный состав лихенофлоры на разных породах деревьев.

На городской территории выделяют уровни – так называемые “зоны лишайников”.

Встречаемость лишайников в различных частях поселка в зависимости от среднего количества диоксида серы в воздухе

Зоны лишайников

Район поселка

Концентрация диоксида серы

“Лишайниковая пустыня”, лишайники практически отсутствуют

Район обогатительной фабрики с сильно загрязненным воздухом

Свыше 0,3 мг/м3
“Зона угнетения”, флора бедна

Район поселка со средней загрязнен-ностью, ул. Суворова и Буденного

0,05 –0,3 мг/м3
“Зона нормальной жизнедеятельности”, видовое разнообразие

Периферийные районы поселка: б/п Красный луч, сосновые посадки, де-ревня Тельбес, дачный поселок 461 км

Менее 0,05 мг/м3

Таким образом, методы оценки загрязненности атмосферы по встречаемости лишайников основаны на следующих закономерностях.

  1. Чем сильнее загрязнен воздух города или поселка, тем меньше встречается в нем видов лишайников (вместо десятков может быть один – два вида).
  2. Чем сильнее загрязнен воздух, тем меньшую площадь покрывают лишайники на стволах деревьев.
  3. При повышении загрязненности воздуха, исчезают первыми кустистые лишайники; за ними – листовые; последними – накипные.

Литература

  1. Ашихмина Т.Я. Школьный экологический мониторинг.Москва: АГАР, 2000.
  2. Дядюн Т.В. Практикум “Мир воздуха”. Ж. “Биология в школе”, № 1, 2001.
  3. Самкова В.А. Мы изучаем лес. Ж. “ Биология в школе”, № 7, 2003.
  4. Чернова Н.М., Былова А.М. Экология. Учебное пособие для педагогических институтов. Москва. Просвещение, 1988.
  5. Чижевский А.Е. Я познаю мир. Детская энциклопедия. Экология. Москва. Издательство АСТ, 1999.

xn--i1abbnckbmcl9fb.xn--p1ai