» Рекомендации специалистов
Человеческий глаз по форме является неправильным шаром диаметром около 2,5 см и носит название глазного яблока. В глаз поступает свет, отражающийся от предметов, а аппарат, который воспринимает его, находится на задней стенке глазного яблока и называется сетчаткой. Сетчатка состоит из нескольких слоев светочувствительных клеток, которые обрабатывают информацию, поступающую к ним извне и дальше перенаправляют сигнал в мозг через зрительный нерв.
Для того, чтобы лучи света, которые поступают в глаз со всех сторон, фокусировались на сетчатке, они должны быть преломлены чтобы изображение попало точно на сетчатку. За фокусировку в глазном яблоке отвечает хрусталик. Хрусталик глазного яблока – это естественная двояковыпуклая линза, находящаяся в передней части глазного яблока.
Хрусталик может менять свою кривизну благодаря наличию цилиарной мышцы. Когда необходимо рассматривать близко расположенные объекты кривизна хрусталика увеличивается, он становится более выпуклым и сильнее преломляет свет. Чтобы рассмотреть объект, находящийся на значительном расстоянии хрусталик уплощается.
Это свойство хрусталика называется аккомодацией, и заключается в способности менять преломляющую силу и фокусную точку глаза. Кроме хрусталика за преломление света отвечает такое вещество как стекловидное тело. Им заполнена большая часть глазного яблока, и состоит оно из прозрачного желеподобного вещества, которое отвечает за форму глаза и его несжимаемость, а так же участвует в преломлении света.
Свет поступает в хрусталик через зрачок, размер зрачка регулируется мышцами, находящимися в радужной оболочке глаза. Кроме мышц радужка содержит пигментные пятна, которые определяют цвет глаза. Глазной аппарат может защищать от губительного действия яркого света путем сужения или расширения зрачка.
Снаружи глазное яблоко покрыто прочной белковой оболочкой, имеющей толщину 0,3-1 мм и называющейся склерой. Склера состоит из волокон, которые образованы коллагеном. Она выполняет защитную и опорную функции. Цвет склеры – молочно-белый, кроме прозрачной передней стенки, называемой роговицей. Именно в роговице происходит первоначальное преломление световых лучей.
Под белковой оболочкой располагается сосудистая оболочка, которая обеспечивает клетки глаза питанием. Именно на сосудистой оболочке располагаются радужка и зрачок. По периферии радужка переходит в ресничное (цилиарное) тело. Именно внутри него располагается цилиарная мышца, которая отвечает за кривизну хрусталика.
В промежутках между радужкой и хрусталиком, и между роговицей и радужкой находятся камеры глаза. Камера глаза - пространство, заполненное прозрачной жидкостью, способной преломлять свет, и которая отвечает за питание хрусталика и роговицы. Защитным механизмом глаза служат веки (верхнее и нижнее), и ресницы. Чтобы глаза нормально видели, в толще век спрятаны слезные железы. Ими выделяется жидкость, которая увлажняет слизистую оболочку.
Подвижность глазного яблока обусловлена наличием трех пар мышц, которые находятся под веками. Первая пара поворачивает глаз вправо, вторая – влево, третья отвечает за вращение относительно оси. Кроме этого. Мышцы помогают глазу фокусироваться на изображении. Если фокус находится за пределами сетчатки, то есть необходимо рассмотреть предмет вблизи – глаз вытягивается. При рассмотрении удаленных объектов глаз заметно округляется. Если оптическая система дала сбой, это означает, что человек имеет проблемы со зрением (близорукость или дальнозоркость).
Близорукость и дальнозоркость
Проблема заключается в том, что фокус попадает не на сетчатку, а перед ней (близорукость) или за неё (дальнозоркость). И без применения корректирующих средств все предметы становятся размытыми.
При близорукости в глазу происходит растяжение склеры в переднее - заднем направлении. И глаз по форме становится эллипсовидным. Из-за того, что продольная ось удлиняется, изображение фокусируется перед сетчаткой, а не на ней. Корректируется этот дефект рассеивающими линзами. При дальнозоркости всё происходит наоборот, глазное яблоко укорачивается и поэтому фокусировка происходит за сетчаткой. Такой дефект корректируется собирающей линзой.
Коррекция близорукости (А) и дальнозоркости (Б)
http://optica100.ru/sovety/kak_ustroen_glaz
Человеческий глаз часто приводят в качестве примера удивительной природной инженерии — но судя по тому, что это один из 40 вариантов устройств, которые появлялись в процессе эволюции у разных организмов, нам стоит поумерить свой антропоцентризм и признать, что по строению человеческий глаз не является чем-то совершенным.
Рассказ про глаз учше всего начать с фотона. Квант электромагнитного излучения неспешно влетает строго в глаз ничего не подозревающего прохожего, который жмурится от неожиданного блика с чьих-то часов.
Первая деталь оптической системы глаза — это роговица. Она меняет направление движения света. Это возможно благодаря такому свойству света, как преломление, ответственного в том числе за радугу. Скорость света постоянна в вакууме — 300 000 000 м/с. Но при переходе из одной среды в другую (в данном случае из воздуха в глаз) свет меняет свою скорость и направление движения. У воздуха коэффициент преломления равен 1,000293, у роговицы — 1,376. Это значит, что луч света в роговице замедляет свое движение в 1,376 раз и отклоняется ближе к центру глаза.
Любимый способ раскалывать партизан — светить им яркой лампой в лицо. Это больно по двум причинам. Яркий свет — это мощное электромагнитное излучение: триллионы фотонов атакуют сетчатку, и ее нервные окончания вынуждены передавать бешеное количество сигналов в мозг. От перенапряжения нервы, как провода, перегорают. При этом мышцы радужки вынуждены сжиматься так сильно, как только могут, отчаянно пытаясь закрыть зрачок и защитить сетчатку.
И подлетает к зрачку. С ним все просто — это отверстие в радужной оболочке. За счет круговых и радиальных мышц радужная оболочка может соответственно сужать и расширять зрачок, регулируя количество света, проникающего в глаз, как диафрагма в фотоаппарате. Диаметр зрачка человека может меняться от 1 до 8 мм в зависимости от освещенности.
Пролетев сквозь зрачок, фотон попадает на хрусталик — вторую линзу, ответственную за его траекторию. Хрусталик преломляет свет слабее, чем роговица, зато он подвижен. Хрусталик висит на цилинарных мышцах, которые меняют его кривизну, тем самым позволяя нам фокусироваться на предметах на разном расстоянии от нас.
Именно с фокусом связаны нарушения зрения. Самые распространенные — близорукость и дальнозоркость. Изображение в обоих случаях фокусируется не на сетчатке, как должно, а перед ней (близорукость), или за ней (дальнозоркость). Виноват в этом глаз, который меняет форму с круглой на овальную, и тогда сетчатка удаляется от хрусталика или приближется к нему.
После хрусталика фотон пролетает сквозь стекловидное тело (прозрачный студень — 2/3 объема всего глаза, на 99% — вода) прямиком на сетчатку. Здесь регистрируются фотоны, и сообщения о прибытии отправляются по нервам в мозг.
Сетчатка устлана клетками-фоторецепторами: когда света нет, они вырабатывают специальные вещества — нейротрансмиттеры, но как только в них попадает фотон, клетки-фоторецепторы перестают их вырабатывать — и это сигнал для мозга. Есть два типа этих клеток: палочки, которые более чувствительны к свету, и колбочки, которые лучше различают движение. Палочек у нас около ста миллионов и еще 6-7 миллионов колбочек, итого больше ста миллионов светочувствительных элементов — это больше 100 мегапикселей, что никакому «хасселю» не снилось.
Слепое пятно — точка прорыва, где совсем нет светочувствительных клеток. Оно довольно большое — 1-2 мм в диаметре. К счастью, у нас бинокулярное зрение и есть мозг, который совмещает две картинки c пятнами в одну нормальную.
На моменте передачи сигнала в человеческом глазу возникает проблема с логикой. Подводный, не особо нуждающийся в зрении житель осьминог в этом смысле гораздо последовательней. У осьминогов фотон сначала врезается в слой колбочек и палочек на сетчатке, сразу за которым ждет слой нейронов и передает сигнал в мозг. У человека свет сперва продирается сквозь слои нейронов — и только потом ударяется в фоторецепторы. Из-за этого в глазу есть первое пятно — слепое.
Второе пятно — желтое, это центральная область сетчатки прямо напротив зрачка, чуть выше зрительного нерва. Этим местом глаз видит лучше всего: концентрация светочувствительных клеток здесь сильно увеличена, поэтому наше зрение по центру визуального поля значительно острее периферийного.
Изображение на сетчатке перевернуто. Мозг умеет правильно интерпретировать картинку, и восстанавливает из перевернутого оригинальное изображение. Дети первые пару дней видят все вверх ногами, пока их мозг устанавливает свой фотошоп. Если надеть очки, переворачивающие изображение (это впервые проделали еще в 1896 году), то через пару дней наш мозг научится интерпретировать и такую перевернутую картинку правильно.
http://theoryandpractice.ru/posts/2029-kak-rabotaet-chelovecheskiy-glaz-i-zachem-mozgu-fotoshop
Зрительное восприятие – многозвеньевой процесс, начинающийся с проекции изображения на сетчатку глаза и возбуждения фоторецепторов и заканчивающийся принятием высшими отделами зрительной сенсорной системы решения о наличии в поле зрения того или иного зрительного образа. В связи с необходимостью наводить глаза на рассматриваемый объект, вращая их, природа создала у большинства видов животных шарообразную форму глазного яблока. На пути к светочувствительной оболочке глаза – сетчатке – лучи света проходят через несколько светопроводящих сред – роговицу, влагу передней камеры, хрусталик и стекловидное тело, назначение которых преломлять их и фокусировать в области расположения рецепторов на сетчатке, обеспечивать четкое изображение на ней.
Камера глаза имеет 3 оболочки. Наружная непрозрачная оболочка – склера, переходит спереди в прозрачную роговицу. Средняя сосудистая оболочка в передней части глаза образует ресничное тело и радужную оболочку, обусловливающую цвет глаз. В середине радужки имеется отверстие – зрачок, регулирующий количество пропускаемых световых лучей. Диаметр зрачка регулируется зрачковым рефлексом, центр которого находится в среднем мозге. Внутренняя сетчатая оболочка (сетчатка) содержит фоторецепторы глаза (палочки и колбочки) и служит для преобразования световой энергии в нервное возбуждение.
Основными преломляющими средами глаза человека являются роговица (обладает наибольшей преломляющей силой) и хрусталик, который представляет собой двояковыпуклую линзу. В глазу преломление света проходит по общим законам физики. Лучи, идущие из бесконечности через центр роговицы и хрусталика (т.е. через главную оптическую ось глаза) перпендикулярно к их поверхности, не испытывают преломления. Все остальные лучи преломляются и сходятся внутри камеры глаза в одной точке – фокусе. Такой ход лучей обеспечивает четкое изображение на сетчатке, причем оно получается уменьшенным и обратным (рис. 26).
Рис. 26. Ход лучей и построение изображений в редуцированном глазу:
АВ – предмет; аb – его изображение; Dd – главная оптическая ось
Аккомодация. Для ясного видения предмета необходимо, чтобы лучи от его точек попадали на поверхность сетчатки, т.е. были здесь сфокусированы. Когда человек смотрит на далекие предметы, их изображение сфокусировано на сетчатке и они видны ясно. При этом близкие предметы видны неясно, их изображение на сетчатке расплывчато, т.к. лучи от них собираются за сетчаткой (рис. 27). Видеть одновременно одинаково ясно предметы, удаленные от глаза на разное расстояние, невозможно.
Рис. 27.Ход лучей от близкой и далекой точки:
От далекой точки А (параллельные лучи) изображение а получается на сетчатке при ненапряженном аккомодационном аппарате; при этом от близкой точки В изображениев образуется за сетчаткой
Приспособление глаза к четкому видению различно удаленных предметов называется аккомодацией. Этот процесс осуществляется за счет изменения кривизны хрусталика и, следовательно, его преломляющей способности. При рассматривании близких предметов хрусталик делается более выпуклым, благодаря чему лучи, расходящиеся от светящейся точки, сходятся на сетчатке. При рассмотрении далеких предметов хрусталик становится менее выпуклым, как бы растягиваясь (рис. 28). Механизм аккомодации сводится к сокращению ресничных мышц, которые изменяют выпуклость хрусталика .
Существует две главные аномалии преломления лучей (рефракции) в глазу: близорукость и дальнозоркость. Они обусловлены, как правило, ненормальной длиной глазного яблока. В норме продольная ось глаза соответствует преломляющей силе глаза. Однако у 35 % людей имеются нарушения этого соответствия.
В случае врожденной близорукости продольная ось глаза больше нормы и фокусировка лучей происходит перед сетчаткой, а изображение на сетчатке становится расплывчатым (рис. 29). Приобретенная близорукость связана с увеличением кривизны хрусталика, возникающая, в основном, при нарушении гигиены зрения. В дальнозорком глазу, наоборот, продольная ось глаза меньше нормы и фокус располагается за сетчаткой. В результате изображение на сетчатке тоже расплывчато. Приобретенная дальнозоркость возникает у пожилых людей из-за уменьшения выпуклости хрусталика и ухудшения аккомодации. В связи с возникновением старческой дальнозоркости ближняя точка ясного видения с возрастом отодвигается (от 7 см в 7 – 10 лет до 75 см в 60 лет и более).
Рис. 29.Схема рефракции в нормальном (а), близоруком (б)
http://helpiks.org/2-3985.html
Комментариев пока нет!
www.formula-zdorovja.ru
» Глаза
Как устроен глаз и как он работает? Как возникают близорукость и дальнозоркость?
В повседневной жизни мы с вами часто используем устройство, которое по своему строению очень похоже на глаз и работает по такому же принципу. Это фотоаппарат. Как и во многом другом, изобретя фотографию, человек просто сымитировал то, что уже существует в природе! Сейчас вы убедитесь в этом.
Глаз человека по форме - неправильный шар диаметром примерно 2,5 см. Этот шар называют глазным яблоком. В глаз поступает свет, который отражается от окружающих нас предметов. Аппарат, который воспринимает этот свет, находится на задней стенке глазного яблока (изнутри) и называется СЕТЧАТКОЙ. Он состоит из нескольких слоев светочувствительных клеток, которые обрабатывают поступающую к ним информацию и отправляют ее в мозг по зрительному нерву.
Но для того, чтобы лучи света, поступающие в глаз со всех сторон, сфокусировались на такой небольшой площади, которую занимает сетчатка, они должны претерпеть преломление и сфокусироваться именно на сетчатке. Для этого в глазном яблоке есть естественная двояковыпуклая линза - ХРУСТАЛИК. Он находится в передней части глазного яблока.
Хрусталик способен менять свою кривизну. Разумеется, он делает это не сам, а с помощью специальной цилиарной мышцы. Чтобы настроиться на видение близко расположенных объектов, хрусталик увеличивает кривизну, становится более выпуклым и сильнее преломляет свет. Для видения удалённых предметов хрусталик становится более плоским.
Свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется АККОМОДАЦИЕЙ.
В преломлении света участвует также вещество, которым заполнена большая часть (2/3 объема) глазного яблока - стекловидное тело. Оно состоит из прозрачного желеобразного вещества, которое не только участвует в преломлении света, но также обеспечивает форму глаза и его несжимаемость.
Свет поступает на хрусталик не по всей передней поверхности глаза, а через маленькое отверстие - зрачок (мы видим его как черный кружок в центре глаза). Размер зрачка, а значит, количество поступающего света, регулируется специальными мышцами. Эти мышцы находятся в радужной оболочке, окружающей зрачок (РАДУЖКЕ ). Радужка, помимо мышц, содержит пигментные клетки, которые определяют цвет наших глаз.
Понаблюдайте за своими глазами в зеркало, и вы увидите, что если на глаз направить яркий свет, то зрачок сужается, а в темноте он, наоборот, становится большим - расширяется. Так глазной аппарат защищает сетчатку от губительного действия яркого света.
Снаружи глазное яблоко покрыто прочной белковой оболочкой толщиной 0,3-1 мм - СКЛЕРОЙ. Она состоит из волокон, образованных белком коллагеном, и выполняет защитную и опорную функцию. Склера имеет белый цвет с молочным отливом, за исключением передней стенки, которая прозрачна. Ее называют РОГОВИЦЕЙ. В роговице происходит первичное преломление лучей света
Под белковой оболочкой находится СОСУДИСТАЯ ОБОЛОЧКА. которая богата кровеносными капиллярами и обеспечивает клетки глаза питанием. Именно в ней находится радужка со зрачком. По периферии радужка переходит в ЦИЛИАРНОЕ. или РЕСНИЧНОЕ, ТЕЛО. В его толще расположена цилиарная мышца, которая, как вы помните, изменяет кривизну хрусталика и служит для аккомодации.
Между роговицей и радужкой, а также между радужкой и хрусталиком находятся пространства – камеры глаза, заполненные прозрачной, светопреломляющей жидкостью, которая питает роговицу и хрусталик.
Защиту глаза обеспечивают также веки - верхнее и нижнее - и ресницы. В толще век находятся слезные железы. Жидкость, которую они выделяют, постоянно увлажняет слизистую оболочку глаза.
Под веками находится 3 пары мышц, которые обеспечивают подвижность глазного яблока. Одна пара поворачивает глаз влево и вправо, другая - вверх и вниз, а третья вращает его относительно оптической оси.
Мышцы обеспечивают не только повороты глазного яблока, но и изменение его формы. Дело в том, что глаз в целом тоже принимает участие в фокусировке изображения. Если фокус находится за пределами сетчатки, глаз немного вытягивается, чтобы видеть вблизи. И наоборот, округляется, когда человек рассматривает далёкие предметы.
Если в оптической системе есть изменения, то в таких глазах появляются близорукость или дальнозоркость. У людей, страдающих этими заболеваниями, фокус попадает не на сетчатку, а перед ней или за ней, и поэтому они видят все предметы размытыми.
Близорукость и дальнозоркость
При близорукости в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Из-за такого удлинения продольной оси глаза изображения предметов фокусируются не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам или пользуется очками с рассеивающими ( минусовыми ) линзами для уменьшения преломляющей силы хрусталика.
Дальнозоркость развивается, если глазное яблоко укорочено в продольном направлении. Световые лучи при этом состоянии собираются за сетчаткой. Для того чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие - плюсовые очки.
Коррекция близорукости (А) и дальнозоркости (Б)
Суммируем всё, что было сказано выше. Свет входит в глаз через роговицу, проходит последовательно сквозь жидкость передней камеры, хрусталик и стекловидное тело, и в конечном итоге попадает на сетчатку, состоящую из светочувствительных клеток
А теперь вернемся к устройству фотоаппарата. Роль светопреломляющей системы (хрусталика) в фотоаппарате играет система линз. Диафрагма, регулирующая размер светового пучка, который поступает в объектив, играет роль зрачка. А сетчатка фотоаппарата - это фотопленка (в аналоговых фотоаппаратах) или светочувствительная матрица (в цифровых фотоаппаратах). Однако важное отличие сетчатки от светочувствительной матрицы фотоаппарата состоит в том, что в ее клетках происходит не только восприятие света, но и начальный анализ зрительной информации и выделение наиболее важных элементов зрительных образов, например направления и скорости движения объекта, его размеров.
http://www.liveinternet.ru/users/4565946/post262742132/
В повседневной жизни мы с вами часто используем устройство, которое по своему строению очень похоже на глаз и работает по такому же принципу. Это фотоаппарат. Как и во многом другом, изобретя фотографию, человек просто сымитировал то, что уже существует в природе! Сейчас вы убедитесь в этом.
Глаз человека по форме - неправильный шар диаметром примерно 2,5 см. Этот шар называют глазным яблоком. В глаз поступает свет, который отражается от окружающих нас предметов. Аппарат, который воспринимает этот свет, находится на задней стенке глазного яблока (изнутри) и называется СЕТЧАТКОЙ. Он состоит из нескольких слоев светочувствительных клеток, которые обрабатывают поступающую к ним информацию и отправляют ее в мозг по зрительному нерву.
Но для того, чтобы лучи света, поступающие в глаз со всех сторон, сфокусировались на такой небольшой площади, которую занимает сетчатка, они должны претерпеть преломление и сфокусироваться именно на сетчатке. Для этого в глазном яблоке есть естественная двояковыпуклая линза - ХРУСТАЛИК. Он находится в передней части глазного яблока.
Хрусталик способен менять свою кривизну. Разумеется, он делает это не сам, а с помощью специальной цилиарной мышцы. Чтобы настроиться на видение близко расположенных объектов, хрусталик увеличивает кривизну, становится более выпуклым и сильнее преломляет свет. Для видения удалённых предметов хрусталик становится более плоским.
Свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется АККОМОДАЦИЕЙ .
В преломлении света участвует также вещество, которым заполнена большая часть (2/3 объема) глазного яблока - стекловидное тело. Оно состоит из прозрачного желеобразного вещества, которое не только участвует в преломлении света, но также обеспечивает форму глаза и его несжимаемость.
Свет поступает на хрусталик не по всей передней поверхности глаза, а через маленькое отверстие - зрачок (мы видим его как черный кружок в центре глаза). Размер зрачка, а значит, количество поступающего света, регулируется специальными мышцами. Эти мышцы находятся в радужной оболочке, окружающей зрачок (РАДУЖКЕ ). Радужка, помимо мышц, содержит пигментные клетки, которые определяют цвет наших глаз.
Понаблюдайте за своими глазами в зеркало, и вы увидите, что если на глаз направить яркий свет, то зрачок сужается, а в темноте он, наоборот, становится большим - расширяется. Так глазной аппарат защищает сетчатку от губительного действия яркого света.
Снаружи глазное яблоко покрыто прочной белковой оболочкой толщиной 0,3-1 мм - СКЛЕРОЙ. Она состоит из волокон, образованных белком коллагеном, и выполняет защитную и опорную функцию. Склера имеет белый цвет с молочным отливом, за исключением передней стенки, которая прозрачна. Ее называют РОГОВИЦЕЙ. В роговице происходит первичное преломление лучей света
Под белковой оболочкой находится СОСУДИСТАЯ ОБОЛОЧКА. которая богата кровеносными капиллярами и обеспечивает клетки глаза питанием. Именно в ней находится радужка со зрачком. По периферии радужка переходит в ЦИЛИАРНОЕ. или РЕСНИЧНОЕ, ТЕЛО. В его толще расположена цилиарная мышца, которая, как вы помните, изменяет кривизну хрусталика и служит для аккомодации.
Между роговицей и радужкой, а также между радужкой и хрусталиком находятся пространства – камеры глаза, заполненные прозрачной, светопреломляющей жидкостью, которая питает роговицу и хрусталик.
Защиту глаза обеспечивают также веки - верхнее и нижнее - и ресницы. В толще век находятся слезные железы. Жидкость, которую они выделяют, постоянно увлажняет слизистую оболочку глаза.
Под веками находится 3 пары мышц, которые обеспечивают подвижность глазного яблока. Одна пара поворачивает глаз влево и вправо, другая - вверх и вниз, а третья вращает его относительно оптической оси.
Мышцы обеспечивают не только повороты глазного яблока, но и изменение его формы. Дело в том, что глаз в целом тоже принимает участие в фокусировке изображения. Если фокус находится за пределами сетчатки, глаз немного вытягивается, чтобы видеть вблизи. И наоборот, округляется, когда человек рассматривает далёкие предметы.
Если в оптической системе есть изменения, то в таких глазах появляются близорукость или дальнозоркость. У людей, страдающих этими заболеваниями, фокус попадает не на сетчатку, а перед ней или за ней, и поэтому они видят все предметы размытыми.
Близорукость и дальнозоркость
При близорукости в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Из-за такого удлинения продольной оси глаза изображения предметов фокусируются не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам или пользуется очками с рассеивающими ( минусовыми ) линзами для уменьшения преломляющей силы хрусталика.
Дальнозоркость развивается, если глазное яблоко укорочено в продольном направлении. Световые лучи при этом состоянии собираются за сетчаткой. Для того чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие - плюсовые очки.
Коррекция близорукости (А) и дальнозоркости (Б)
Суммируем всё, что было сказано выше. Свет входит в глаз через роговицу, проходит последовательно сквозь жидкость передней камеры, хрусталик и стекловидное тело, и в конечном итоге попадает на сетчатку, состоящую из светочувствительных клеток
А теперь вернемся к устройству фотоаппарата. Роль светопреломляющей системы (хрусталика) в фотоаппарате играет система линз. Диафрагма, регулирующая размер светового пучка, который поступает в объектив, играет роль зрачка. А сетчатка фотоаппарата - это фотопленка (в аналоговых фотоаппаратах) или светочувствительная матрица (в цифровых фотоаппаратах). Однако важное отличие сетчатки от светочувствительной матрицы фотоаппарата состоит в том, что в ее клетках происходит не только восприятие света, но и начальный анализ зрительной информации и выделение наиболее важных элементов зрительных образов, например направления и скорости движения объекта, его размеров.
http://allforchildren.ru/why/how77.php
КАК УСТРОЕН ГЛАЗ
По форме глаз человека представляет собой шар диаметром примерно 2,5 см. Этот шар называют глазным яблоком. В глаз поступает свет, который отражается от окружающих нас предметов. Аппарат, который воспринимает этот свет, находится на задней стенке глазного яблока (изнутри) и называется сетчаткой. Он состоит из нескольких слоев светочувствительных клеток, которые обрабатывают поступающую к ним информацию и отправляют ее в мозг по зрительному нерву.
Но для того, чтобы лучи света, поступающие в глаз со всех сторон, сфокусировались на такой небольшой площади, которую занимает сетчатка, они должны претерпеть преломление. Для этого в глазном яблоке есть естественная двояковыпуклая линза #8212; хрусталик. Он находится в передней части глазного яблока.
Хрусталик способен менять свою кривизну. Разумеется, он делает это не сам, а с помощью специальной цилиарной мышцы. Чтобы настроиться на видение близко расположенных объектов, хрусталик увеличивает кривизну, становится более выпуклым и сильнее преломляет свет. Для видения удалённых предметов хрусталик становится более плоским.
Свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза, называется аккомодацией.
В преломлении света участвует также вещество, которым заполнена большая часть (2/3 объема) глазного яблока #8212; стекловидное тело. Оно состоит из прозрачного желеобразного вещества, которое не только участвует в преломлении света, но также обеспечивает форму глаза и его несжимаемость.
Свет поступает на хрусталик не по всей передней поверхности глаза, а через маленькое отверстие #8212; зрачок (мы видим его как черный кружок в центре глаза). Размер зрачка, а значит, количество поступающего света, регулируется специальными мышцами. Эти мышцы находятся в радужной оболочке. окружающей зрачок (радужке). Радужка, помимо мышц, содержит пигментные клетки, которые определяют цвет наших глаз.
Понаблюдайте за своими глазами в зеркало, и вы увидите, что если на глаз направить яркий свет, то зрачок сужается, а в темноте он, наоборот, расширяется. Так глазной аппарат защищает сетчатку от губительного действия яркого света.
Снаружи глазное яблоко покрыто прочной белковой оболочкой толщиной 0,3-1 мм #8212; склерой. Она состоит из волокон, образованных белком коллагеном, и выполняет защитную и опорную функцию. Склера имеет белый цвет с молочным отливом, за исключением передней стенки, которая прозрачна. Её называют роговицей. В роговице происходит первичное преломление лучей света
Под белковой оболочкой находится сосудистая оболочка, которая обеспечивает клетки глаза питанием. Именно в ней находится радужка со зрачком. По периферии радужка переходит в цилиарное, или ресничное тело. В его толще расположена цилиарная мышца, которая изменяет кривизну хрусталика и служит для аккомодации.
Между роговицей и радужкой, а также между радужкой и хрусталиком находятся пространства – камеры глаза, заполненные прозрачной, светопреломляющей жидкостью, которая питает роговицу и хрусталик.
Защиту глаза обеспечивают также веки #8212; верхнее и нижнее #8212; и ресницы. В толще век находятся слезные железы. Жидкость, которую они выделяют, постоянно увлажняет слизистую оболочку глаза.
Под веками находится 3 пары мышц, которые обеспечивают подвижность глазного яблока. Одна пара поворачивает глаз влево и вправо, другая #8212; вверх и вниз, а третья вращает его относительно оптической оси.
Мышцы обеспечивают не только повороты глазного яблока, но и изменение его формы. Дело в том, что глаз в целом тоже принимает участие в фокусировке изображения. Если фокус находится за пределами сетчатки, глаз немного вытягивается, чтобы видеть вблизи. И наоборот, округляется, когда человек рассматривает далёкие предметы.
Если в оптической системе есть изменения, то в таких глазах появляются близорукость или дальнозоркость. У людей, страдающих этими заболеваниями, фокус попадает не на сетчатку, а перед ней или за ней, и поэтому они видят все предметы размытыми.
При близорукости в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Из-за такого удлинения продольной оси глаза изображения предметов фокусируются не на самой сетчатке, а перед ней, и человек стремится все приблизить к глазам или пользуется очками с рассеивающими (#171;минусовыми#187;) линзами для уменьшения преломляющей силы хрусталика.
Дальнозоркость развивается, если глазное яблоко укорочено в продольном направлении. Световые лучи при этом состоянии собираются за сетчаткой. Для того чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие #8212; #171;плюсовые#187; очки.
Обратимся к устройству фотоаппарата. Роль светопреломляющей системы (хрусталика) в фотоаппарате играет система линз. Диафрагма, регулирующая размер светового пучка, который поступает в объектив, играет роль зрачка. А #171;сетчатка#187; фотоаппарата #8212; это фотопленка (в аналоговых фотоаппаратах) или светочувствительная матрица (в цифровых). Однако важное отличие сетчатки от светочувствительной матрицы фотоаппарата состоит в том, что в её клетках происходит не только восприятие света, но и начальный анализ зрительной информации и выделение наиболее важных элементов зрительных образов, например направления и скорости движения объекта, его размеров.
На сетчатке глаза и светочувствительной матрице фотоаппарата формируется уменьшенное перевернутое изображение внешнего мира #8212; результат действия законов оптики. Но вы видим мир не перевернутым, потому что в зрительном центре мозга происходит анализ полученной информации с учетом этой #171;поправки#187;.
А вот новорожденные видят мир перевёрнутым примерно до трёх недель. К трём неделям мозг обучается переворачивать увиденное.
Известен такой интересный эксперимент, автор которого #8212; Джордж М. Стрэттон из Калифорнийского университета. Если человеку надеть очки, которые переворачивают зрительный мир вверх ногами, то в первые дни у него происходит совершенная дезориентация в пространстве. Но уже через неделю человек привыкает к #171;перевернутому#187; миру вокруг него, и даже все меньше осознает, что окружающий мир перевернут; у него формируются новые зрительно-двигательные координации. Если после этого снять очки-перевертыши, то у человека снова происходит нарушение ориентации в пространстве, которое вскоре проходит. Этот эксперимент демонстрирует гибкость работы зрительного аппарата и мозга в целом.
http://piliugina.ru/kak-ustroen-glaz/
Комментариев пока нет!
www.formula-zdorovja.ru
Зрение является каналом, посредством которого человек получает примерно 70% всех данных о мире, который его окружает. И возможно это только по той причине, что именно зрение человека представляет собой одну из самых сложных и поражающих воображение зрительных систем на нашей планете. Если бы не было зрения, все мы, скорее всего, просто жили бы в темноте.
Человеческий глаз обладает совершенным строением и обеспечивает зрение не только в цвете, но также в трёх измерениях и с высочайшей резкостью. Он обладает способностью моментально менять фокус на самые разные расстояния, осуществлять регуляцию объёма поступающего света, различать между собой огромное количество цветов и ещё большее количество оттенков, производить коррекцию сферических и хроматических аберраций и т.д. С мозгом глаз связывают шесть уровней сетчатки, в которых ещё перед тем, как информация будет отправлена в мозг, данные проходят через этап компрессии.
Но как же устроено наше с вами зрение? Как посредством усиления цвета, отражённого от предметов, мы трансформируем его в изображение? Если подумать об этом серьёзно, можно сделать вывод, что устройство зрительной системы человека до мельчайших подробностей «продумано» создавшей его Природой. Если же вы предпочитаете верить в то, что за создание человека ответственен Создатель или некая Высшая Сила, то эту заслугу можете приписать им. Но давайте не будем разбираться в тайнах бытия, а продолжим разговор об устройстве зрения.
Строение глаза и его физиологию можно без обиняков назвать действительно идеальными. Подумайте сами: оба глаза находятся в костных впадинах черепа, которые защищают их от всевозможных повреждений, однако выступают из них они именно так, чтобы обеспечивался максимально широкий горизонтальный обзор.
Расстояние, на котором глаза находятся друг от друга, обеспечивает пространственную глубину. А сами глазные яблоки, как доподлинно известно, обладают шарообразной формой, благодаря чему способны вращаться в четырёх направлениях: влево, вправо, вверх и вниз. Но каждый из нас воспринимает всё это, как само собой разумеющееся – мало кому приходит в голову представить, что было бы, если бы наши глаза были квадратными или треугольными или их движение было бы хаотичным – это бы сделало зрение ограниченным, сумбурным и малоэффективным.
Итак, устройство глаза предельно сложно, но как раз это и делает возможным работу примерно четырёх десятков его различных составляющих. И даже если бы не было хоть одного из этих элементов, процесс зрения перестал бы осуществляться так, как ему следует осуществляться.
Чтобы убедиться в том, насколько сложно устроен глаз, предлагаем вам обратить своё внимание на рисунок ниже.
Давайте же поговорим о том, как реализуется на практике процесс зрительного восприятия, какие элементы зрительной системы в этом участвуют, и за что каждый из них отвечает.
По мере приближения света к глазу световые лучи сталкиваются с роговицей (иначе её называют роговой оболочкой). Прозрачность роговицы позволяет свету проходить сквозь неё во внутреннюю поверхность глаза. Прозрачность, кстати, является важнейшей характеристикой роговицы, и прозрачной она остаётся по причине того, что особый протеин, который в ней содержится, сдерживает развитие кровеносных сосудов – процесс, происходящий практически в каждой из тканей человеческого тела. В том случае если бы роговица прозрачной не была, остальные компоненты зрительной системы не имели бы никакого значения.
Помимо прочего, роговица не даёт попадать во внутренние полости глаза сору, пыли и каким-либо химическим элементам. А кривизна роговой оболочки позволяет ей преломлять свет и помогать хрусталику фокусировать световые лучи на сетчатке.
После того как свет прошёл сквозь роговицу, он проходит через маленькое отверстие, расположенное посередине радужки глаза. Радужка же представляет собой круглую диафрагму, которая находится перед хрусталиком сразу за роговицей. Радужка также является тем элементом, который придаёт глазу цвет, а цвет зависит от преобладающего в радужке пигмента. Центральное отверстие в радужке – это и есть знакомый каждому из нас зрачок. Размер этого отверстия имеет возможность изменяться, чтобы контролировать количество поступающего в глаз света.
Размер зрачка изменятся непосредственно радужкой, а обусловлено это её уникальнейшим строением, ведь состоит она из двух различных видов мышечных тканей (даже здесь есть мышцы!). Первая мышца является круговой сжимающей – она располагается в радужке кругообразно. Когда свет яркий, происходит её сокращение, вследствие чего зрачок сокращается, как бы втягиваясь мышцей внутрь. Вторая мышца является расширяющей – она расположена радиально, т.е. по радиусу радужки, что можно сравнить со спицами в колесе. При тёмном освещении происходит сокращение этой второй мышцы, и радужка раскрывает зрачок.
Многие специалисты-эволюционисты до сих пор испытывают некоторые затруднения, когда пытаются объяснить, каким же всё-таки образом происходит формирование вышеназванных элементов зрительной системы человека, ведь в любой другой промежуточной форме, т.е. на каком-либо эволюционном этапе работать они просто не смогли бы, но человек видит с самого начала своего существования. Загадка…
Минуя названные выше этапы, свет начинает проходить через хрусталик, находящийся за радужкой. Хрусталик является оптическим элементом, имеющим форму выпуклого продолговатого шара. Хрусталик абсолютно гладок и прозрачен, в нём нет кровеносных сосудов, а сам он расположен в эластичном мешочке.
Проходя сквозь хрусталик, свет преломляется, после чего происходит его фокусировка на ямке сетчатки – самом чувствительном месте, содержащем максимальное количество фоторецепторов.
Важно заметить, что уникальное строение и состав обеспечивают роговице и хрусталику большую силу преломления, гарантирующую короткое фокусное расстояние. И как же удивительно, что такая сложная система вмещается всего в одном глазном яблоке (подумайте только, как бы мог выглядеть человек, если бы для фокусировки световых лучей, идущих от предметов, требовался бы, например, метр!).
Не менее интересно и то, что совместная преломляющая сила этих двух элементов (роговицы и хрусталика) находится в прекрасном соотношении с глазным яблоком, а это можно смело назвать ещё одним доказательством того, что зрительная система создана просто непревзойдённо, т.к. процесс фокусирования слишком сложен, чтобы говорить о нём, как о чём-то, что произошло лишь благодаря пошаговым мутациям – эволюционным стадиям.
Если же речь идёт о предметах расположенных близко к глазу (как правило, близким считается расстояние менее 6 метров), то здесь всё ещё любопытнее, ведь в этой ситуации преломление световых лучей оказывается ещё более сильным. Обеспечивается же это увеличением кривизны хрусталика. Хрусталик соединён посредством цилиарных поясков с ресничной мышцей, которая, сокращаясь, даёт хрусталику возможность принимать более выпуклую форму, тем самым увеличивая свою преломляющую силу.
И здесь снова нельзя не упомянуть о сложнейшем строении хрусталика: составляют его множество ниточек, которые состоят из соединённых друг с другом клеточек, а тонкие пояски связывают его с цилиарным телом. Фокусировка осуществляется под контролем головного мозга крайне быстро и на полном «автомате» — осуществить такой процесс осознанно для человека невозможно.
Результатом фокусировки становится сосредоточение изображения на сетчатке, представляющей собой многослойную ткань, чувствительную к свету, покрывающую заднюю часть глазного яблока. В сетчатке содержится примерно 137 000 000 фоторецепторов (для сравнения можно привести современные цифровые фотоаппараты, в которых подобных сенсорных элементов не более 10 000 000). Такое громадное количество фоторецепторов обусловлено тем, что расположены они крайне плотно – примерно 400 000 на 1 мм².
Здесь не будет лишним привести слова специалиста по микробиологии Алана Л. Гиллена, говорящего в своей книге «Тело по замыслу» о сетчатке глаза, как о шедевре инженерного проектирования. Он считает, что сетчатка является самым удивительным элементом глаза, сравнимым с фотоплёнкой. Светочувствительная сетчатка, расположенная на задней стороне глазного яблока, намного тоньше целлофана (её толщина составляет не более 0,2 мм) и гораздо чувствительнее, чем любая, созданная человеком фотоплёнка. Клетки этого уникального слоя способны обрабатывать до 10 миллиардов фотонов, в то время как самый чувствительный фотоаппарат способен обработать лишь несколько их тысяч. Но ещё удивительнее то, что человеческий глаз может улавливать единицы фотонов даже в темноте.
Всего сетчатку составляют 10 слоёв фоторецепторных клеток, 6 слоёв из которых являются слоями светочувствительных клеток. 2 вида фоторецепторов имеют особую форму, по причине чего их называют колбочками и палочками. Палочки крайне восприимчивы к свету и обеспечивают глазу чёрно-белое восприятие и ночное зрение. Колбочки, в свою очередь, не так восприимчивы к свету, но способны различать цвета – оптимальная работа колбочек отмечается в дневное время суток.
Благодаря работе фоторецепторов световые лучи трансформируются в комплексы электрических импульсов и посылаются в мозг на невероятно большой скорости, а сами эти импульсы за доли секунд преодолевают свыше миллиона нервных волокон.
Связь фоторецепторных клеток в сетчатке очень сложна. Колбочки и палочки никак напрямую с мозгом не связаны. Получив сигнал, они переадресовывают его биполярным клеткам, а те перенаправляют уже обработанные собою сигналы ганглиозным клеткам, более миллиона аксонов (нейритов, по которым передаются нервные импульсы) которых составляют единый зрительный нерв, по которому данные и поступают в мозг.
Два слоя промежуточных нейронов, до того как зрительные данные будут отправлены в мозг, способствуют параллельной обработке этой информации шестью уровнями восприятия, находящимися в сетчатке глаза. Необходимо это для того чтобы изображения распознавались как можно быстрее.
После того как обработанная зрительная информация поступает в мозг, он начинает её сортировку, обработку и анализ, а также формирует цельное изображение из отдельных данных. Конечно же, о работе человеческого мозга ещё много чего неизвестно, однако даже того, что научный мир может предоставить сегодня, вполне достаточно, чтобы поразиться.
При помощи двух глаз формируются две «картинки» мира, который окружает человека – по одной на каждую сетчатку. Обе «картинки» передаются в мозг, и в действительности человек видит два изображения в одно и то же время. Но как?
А дело вот в чём: точка сетчатки одного глаза точно соответствует точке сетчатки другого, а это говорит о том, чтоб оба изображения, попадая в мозг, могут накладываться друг на друга и сочетаться вместе для получения единого изображения. Информация, полученная фоторецепторами каждого из глаз, сходится в зрительной коре головного мозга, где и появляется единое изображение.
По причине того, что у двух глаз может быть разная проекция, могут наблюдаться и некоторые несоответствия, однако мозг сопоставляет и соединяет изображения таким образом, что человек никаких несоответствий не ощущает. Мало того – эти несоответствия могут быть использованы с целью получения чувства пространственной глубины.
Как известно, из-за преломления света зрительные образы, поступающие в мозг, изначально являются очень маленькими и перевёрнутыми, однако «на выходе» мы получаем то изображение, которое привыкли видеть.
Помимо этого в сетчатке изображение делится мозгом надвое по вертикали – через линию, которая проходит через ямку сетчатки. Левые части изображений, полученных обоими глазами, перенаправляются в правое полушарие, а правые части – в левое. Так, каждое из полушарий смотрящего человека получает данные только от одной части того, что он видит. И снова – «на выходе» мы получаем цельное изображение без каких бы то ни было следов соединения.
Разделение изображений и крайне сложные оптические пути делают так, что мозг видит отдельно каждым из своих полушарий с использованием каждого из глаз. Это позволяет ускорить обработку потока входящей информации, а также обеспечивает зрение одним глазом, если вдруг человек по какой-либо причине перестаёт видеть другим.
Можно заключить, что мозг в процессе обработки зрительной информации убирает «слепые» пятна, искажения из-за микродвижений глаз, морганий, угла зрения и т.п., предлагая своему хозяину адекватное целостное изображение наблюдаемого.
Ещё одним из важных элементов зрительной системы является движение глаз. Умалять значение этого вопроса никак нельзя, т.к. чтобы вообще иметь возможность использовать зрение должным образом мы должны уметь поворачивать глаза, поднимать их, опускать, короче говоря – двигать глазами.
Всего можно выделить 6 внешних мышц, которые соединяются с внешней поверхностью глазного яблока. К этим мышцам относятся 4 прямые (нижняя, верхняя, боковая и средняя) и 2 косые (нижняя и верхняя).
В тот момент, когда какая-либо из мышц сокращается, мышца, являющаяся для неё противоположной, расслабляется – это обеспечивает ровное движение глаз (в противном случае все движения глазами осуществлялись бы рывками).
При повороте двух глаз автоматически изменяется движение всех 12 мышц (по 6 мышц на каждый глаз). И примечательно то, что процесс этот является непрерывным и очень хорошо скоординированным.
По словам знаменитого офтальмолога Питера Джени, контроль и координация связи органов и тканей с центральной нервной системой посредством нервов (это называется иннервацией) всех 12 глазных мышц представляет собой один из очень сложных процессов, происходящих в мозге. Если же добавить к этому точность перенаправления взора, плавность и ровность движений, скорость, с которой может вращаться глаз (а она составляет в сумме до 700° в секунду), и соединить всё это, мы получим на самом деле феноменальную по части исполнения подвижную глазную систему. А то, что человек имеет два глаза, делает её ещё более сложной – при синхронном движении глаз необходима одинаковая мускульная иннервация.
Мышцы, которые вращают глаза, отличны от мышц скелета, т.к. их составляет множество всевозможных волокон, а контролируются они ещё большим числом нейронов, иначе точность движений стала бы невозможной. Данные мышцы можно назвать уникальными ещё и потому, что они способны быстро сокращаться и практически не устают.
Учитывая то, что глаз – это один из наиболее важных органов человеческого организма, он нуждается в непрерывном уходе. Именно для этого как раз и предусмотрена, если так можно назвать, «интегрированная система очистки», которая состоит из бровей, век, ресниц и слёзных желёз.
При помощи слёзных желёз регулярно производится липкая жидкость, с медленной скоростью движущаяся вниз по внешней поверхности глазного яблока. Эта жидкость смывает различный сор (пыль и т.п.) с роговицы, после чего входит во внутренний слёзный канал и затем стекает по носовому каналу, выводясь из организма.
В слезах содержится очень сильное антибактериальное вещество, уничтожающее вирусы и бактерии. Веки выполняют функцию стеклоочистителей – они очищают и увлажняют глаза благодаря непроизвольному морганию с интервалом в 10-15 секунд. Вместе с веками работают ещё и ресницы, предотвращая попадание в глаз любого сора, грязи, микробов и т.п.
Если бы веки не выполняли свою функцию, глаза человека постепенно бы засохли и покрылись рубцами. Если бы не было слёзного протока, глаза бы постоянно заливались слёзной жидкостью. Если бы человек не моргал, в его глаза попадал бы мусор, и он мог бы даже ослепнуть. Вся «очистительная система» должна включать в себя работу всех элементов без исключения, в противном случае она просто перестала бы функционировать.
Глаза человека способны передавать немало информации в процессе его взаимодействия с другими людьми и окружающим миром. Глаза могут излучать любовь, гореть от гнева, отражать радость, страх или беспокойство, говорить о тревоге или усталости. Глаза показывают, куда смотрит человек, заинтересован он в чём-либо или же нет.
Например, когда люди закатывают глаза, беседуя с кем-то, это можно расценивать совершенно иначе, нежели обычный взгляд, направленный вверх. Большие глаза у детей вызывают у окружающих восторг и умиление. А состояние зрачков отражает то состояние сознания, в котором в данный момент времени находится человек. Глаза – это показатель жизни и смерти, если уж говорить в глобальном смысле. Наверное, именно по этой причине их называют «зеркалом» души.
В этом уроке мы с вами рассмотрели устройство зрительной системы человека. Естественно, мы упустили немало деталей (сама по себе эта тема очень объёмна и вместить её в рамки одного урока проблематично), но всё же постарались донести материал так, чтобы вы имели чёткое представление о том, КАК видит человек.
Вы не могли не заметить, что как сложность, так и возможности глаза позволяют этому органу многократно превосходить даже самые современные технологии и научные разработки. Глаз является наглядной демонстрацией сложности инженерии в огромном количестве нюансов.
Но знать об устройстве зрения – это, конечно же, хорошо и полезно, однако наиболее важно знать о том, как зрение можно восстанавливать. Дело в том, что и образ жизни человека, и условия, в которых он живёт, и некоторые другие факторы (стрессы, генетика, вредные привычки, заболевания и многое другое) – всё это нередко способствует тому, что с годами зрение может ухудшаться, т.е. зрительная система начинает давать сбои.
Но ухудшение зрения в большинстве случаев не является необратимым процессом – зная определённые методики, данный процесс можно повернуть вспять, и сделать зрение, если уж и не таким, как у младенца (хотя иногда возможно и это), то хорошим настолько, насколько вообще это возможно для каждого отдельно взятого человека. Поэтому следующий урок нашего курса по развитию зрения будет посвящён методам восстановления зрения.
Зрите в корень!
Если вы хотите проверить свои знания по теме данного урока, можете пройти небольшой тест, состоящий из нескольких вопросов. В каждом вопросе правильным может быть только 1 вариант. После выбора вами одного из вариантов, система автоматически переходит к следующему вопросу. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что вопросы каждый раз разные, а варианты перемешиваются.
Кирилл Ногалес4brain.ru
Строение глаза человека практически идентично устройству его у многих видов животных. Даже акулы и кальмары имеют строение глаза как у человека. Это говорит о том, что этот орган зрения появился очень давно и практически не изменялся со временем. Все глаза по своему устройству можно разделить на три типа:
Устройство глаза сложно, он состоит из более десятка элементов. Строение глаза человека может называться самым сложным и высокоточным в его теле. Малейшее нарушение или несоответствие в анатомии приводит к заметному ухудшению зрения или полной слепоте. Потому существуют отдельные специалисты, сосредотачивающие свои усилия на этом органе. Для них крайне важно знать в мельчайших деталях, как устроен глаз человека.
Весь состав органов зрения можно разделить на несколько частей. В зрительную систему входит не только сам глаз, но и идущие от него зрительные нервы, обрабатывающий поступающую информацию участок головного мозга, а также органы, предохраняющие глаз от повреждения.
К предохраняющим органам зрения можно отнести веки и слезные железы. Немаловажным является мышечная система глаза.
Сам глаз состоит из светопреломляющей, аккомодационной и рецепторной системы.
Первоначально свет проходит через роговицу – прозрачный участок внешней оболочки, осуществляющий первичную фокусировку света. Часть лучей отсеивается радужкой, другая часть проходит через отверстие в ней – зрачок. Адаптация к интенсивности светового потока осуществляется зрачком при помощи расширения или сужения.
Окончательное преломление света происходит с помощью линзы. После чего пройдя через стекловидное тело, лучи света попадают на сетчатку глаза – рецепторный экран, преобразующий информацию светового потока в информацию нервного импульса. Само же изображение формируется в зрительном отделе мозга человека.
Представляет собой систему линз. Первая линза – роговица глаза, благодаря этой части глаза поле зрения человека составляет 190 градусов. Нарушения этой линзы приводят к туннельному зрению.
Окончательное преломление света происходит в хрусталике глаза, он фокусирует лучи света на небольшом участке сетчатки. Хрусталик отвечает за остроту зрения, изменения его формы ведут к близорукости или дальнозоркости.
Эта система регулирует интенсивность поступающего света и его фокус. Она состоит из радужки, зрачка, кольцевых, радиальных и цилиарных мышц, также к этой системе можно отнести хрусталик. Фокусировка для видения удаленных или приближенных предметов происходит при помощи изменения его кривизны. Кривизну хрусталика изменяют цилиарные мышцы.
Регулирование светового потока идет из-за изменения диаметра зрачка, расширения или сужения радужки. За сжатие зрачка отвечают кольцевые мышцы радужки, за его расширение – радиальные мышцы радужки.
Представлена сетчаткой, состоящей из фоторецепторных клеток и подходящим к ним окончаний нейронов. Анатомия сетчатки сложная и неоднородная, на ней есть слепое пятно и участок с повышенной чувствительностью, сама она состоит из 10 слоев. За главную функцию обработки информации света отвечают фоторецепторные клетки, разделяемые по форме на палочки и колбочки.
Для визуального наблюдения доступна лишь малая часть глазного яблока, а именно – одна шестая часть. Остальное глазное яблоко расположено в глубине глазницы. Масса составляет примерно 7 грамм. По форме он имеет неправильную шаровидную форму, слегка вытянутую по сагиттальному (вглубь) направлению.
Изменение сагиттальной длины приводит к близорукости и дальнозоркости, также как изменение формы хрусталика.
Интересный факт: глаз – это единственная часть человеческого тела одинаковая по размеру и массе у всего нашего рода, он различается лишь на доли миллиметров и миллиграмм.
Их цель – защита и увлажнение глаза. Сверху века располагается тонкий слой кожи и ресницы, последние предназначены для отведения стекающих капель пота и для защиты глаза от грязи. Веко снабжено обильной сетью кровеносных сосудов, форму оно держит при помощи хрящевого слоя. Снизу располагается конъюнктива – слизистый слой, содержащий множество желез. Железы увлажняют глазное яблоко для снижения трения при его движении. Сама влага равномерно распределяется по глазу в результате моргания.
Интересный факт: человек моргает 17 раз в минуту, при чтении книги частота сокращается почти вдвое, а при чтении текста в компьютере исчезает практически полностью. Именно поэтому глаза так сильно устают от компьютера.
Для моргания основная часть века представляет собой мышечную толщу. Равномерное увлажнение происходит при соединении верхнего и нижнего века, полуприкрытое верхнее веко не способствует равномерному увлажнению. Также моргание защищает орган зрения от летающих мелких частиц пыли и насекомых. Моргание также помогает выведению инородных предметов, ещё за это отвечают слезные железы.
Интересный факт: мышцы века самые быстрые, моргание занимает 100-150 миллисекунд, человек может моргать со скоростью 5 раз в секунду.
От их работы зависит направление взгляда человека, при несогласованной работе возникает косоглазие. Мышцы глаза делятся на десяток групп, главные из них – те, которые отвечают за направление взгляда человека, поднятие и опускание века. Сухожилия мышц врастают в ткань склеротической оболочки.
Интересный факт: мышцы глаза самые активные, даже сердечная мышца им уступает.
Интересный факт: майя считали косоглазие красивым, они специальными упражнениями развивали у своих детей косоглазие.
Склера защищает строение человеческого глаза, она представлена фиброзной тканью и покрывает 4/5 его части. Она довольно прочная и плотная. Благодаря этим качествам строение глаза не меняет свою форму, а внутренние оболочки надежно защищены. Склера непрозрачна, имеет белый цвет («белки» глаз), содержит кровеносные сосуды.
В отличие от нее роговица прозрачна, не имеет кровеносных сосудов, кислород поступает через верхний слой из окружающего воздуха. Роговица – очень чувствительная часть глаза, после повреждения она не восстанавливается, в результате чего наступает слепота.
Радужка — это подвижная диафрагма. Она участвует в регуляции светового потока, проходящего через зрачок – отверстие в ней. Для отсеивания света радужка светонепроницаема, имеет специальные мышцы для расширения и сужения просвета зрачка. Круговые мышцы окружают радужку кольцом, при их сокращении зрачок сужается. Радиальные мышцы радужки отходят от зрачка наподобие лучиков, при их сокращении зрачок расширяется.
Радужка имеет самые разные цвета. Самый частый из них – коричневый, реже встречаются зеленые, серые и голубые глаза. Но есть и более экзотические цвета радужки: красный, желтый, фиолетовый и даже белый. Коричневый цвет приобретается за счет меланина, при большом его содержании радужка становится черной. При малом содержании радужка приобретает серый, голубой или синий оттенок. Красный цвет встречается у альбиносов, а желтый цвет возможен при пигменте липофусцине. Зеленый цвет является сочетанием синего и желтого оттенка.
Интересный факт: схема отпечатков пальцев имеет 40 уникальных показателей, а схема радужки – 256. Именно поэтому применяется сканирование сетчатки глаза.
Интересный факт: голубой цвет глаз является патологией, он появился в результате мутации примерно 10 000 лет назад. У вех голубоглазых людей был общий предок.
Его анатомия довольна проста. Это двояковыпуклая линза, основная задача которой – фокусировка картинки на сетчатке глаза. Хрусталик заключен в оболочку однослойных кубических клеток. Он фиксируется в глазу при помощи крепких мышц, эти мышц могут влиять на кривизну хрусталика, тем самым изменяя фокусировку лучей.
Многослойная рецепторная структура располагается внутри глаза, на задней его стенке. Её анатомия переназначена для лучшей обработки поступающего света. Основу рецепторного аппарата сетчатки представляют клетки: палочки и колбочки. При дефиците света, четкость восприятия возможна благодаря палочкам. За цветовую передачу отвечают колбочки. Преобразование светового потока в электрический сигнал идет при помощи фотохимических процессов.
Интересный факт: дети не различают цвета после родов, слой колбочек окончательно формируется лишь через две недели.
Колбочки реагируют на световые волны по-разному. Они делятся на три группы, каждая из которых воспринимает только свой определенный цвет: синий, зеленый или красный. На сетчатке есть место, куда входит зрительный нерв, здесь отсутствуют фоторецепторные клетки. Эта зона называется «Слепым пятном». Также есть зона с наибольшим содержанием светочувствительных клеток «Желтое пятно», оно обуславливает ясную картинку в центре поля зрения. Сетчатка интересна тем, что она неплотно прилегает к следующему сосудистому слою. Из-за этого иногда появляется такая патология, как отслоение сетчатки глаза.
Автор статьи: Павел Назаровzreniemed.ru
на фото строение глаза человека
Зрение формирует информационное поле, которое воспринимается сознанием. Интеллектуальная и эмоциональная сферы личности гармонично развиваются именно благодаря зрению. Строение глаза, при всей его миниатюрности, обеспечивает не только восприятие света, но и надёжную защиту самого органа зрения.
Как же устроен глаз человека?
глаз человека
Если рассматривать фото или рисунок с изображением органа зрения человека, то видна его слегка неправильная шаровидная форма и наличие нескольких оболочек. Этой формой объясняется и название «глазное яблоко». Два таких волшебных яблока расположены в глазницах, симметричных углублениях в лицевой части черепа. Каждое из них весит приблизительно 8 г и имеет диаметр около 23 мм.
Нежная, прозрачная субстанция с сетью волокон заполняет внутренний объём глазных яблок. Это стекловидное тело. Оно имеет гелеобразную консистенцию и помогает поддерживать сферическую форму глазного яблока. Оно участвует в преломлении луча света и в обменных процессах. Его абсолютная прозрачность обеспечивает проникновение света вглубь глаза.
Верхнее покрытие глазного яблока – конъюнктива, склера, роговица
У глазного яблока три оболочки: наружная, средняя и внутренняя. Снаружи находится роговично-склеральная капсула. Она является своеобразной кожицей яблока, надёжно защищающей его. Она плотная, упругая и местами имеет значительную для глаза толщину – 1 мм. Две её части – склера и роговица. Склеру иногда называют белком глаза. Она лишена прозрачности, но в передней части глазного яблока переходит в прозрачную роговицу. Она имеет поверхность, выпуклую по отношению к сфере глазного яблока, и напоминает стекло часов. Преломление световых лучей обеспечивается самим строением глаза, в том числе, и выпуклой роговицей. Она необычайно чувствительна, поскольку имеет множество нервных окончаний. Эта чувствительность вызывает рефлекторное смыкание век при малейшем воздействии извне. Такое строение глаза не позволяет случайным факторам нанести вред роговице.
Влажная слизистая оболочка, которая называется конъюнктивой, – это самый верхний слой передней части глазного яблока. Он непосредственно контактирует с окружающей средой, покрывая и внутреннюю поверхность век. Увлажнённость позволяет векам легко двигаться и предохранять поверхность глаза от пересыхания.
Средняя оболочка глаза имеет на рисунке вид тонкого слоя красного цвета. Это цвет крови, а оболочка пронизана кровеносными сосудами. 80% всей необходимой глазу крови вырабатывается этими сосудами и циркулирует в них, питая ткани глаза. Сосудистая оболочка имеет две особые части – радужную оболочку, а за ней – цилиарное (ресничное) тело. Сосудистым трактом принято называть совокупность всех трёх частей. Это название подчёркивает непрерывность движения крови в оболочке.
Ресничное тело содержит цилиарную мышцу и отростки. Мышца отвечает за важнейшую способность глаза к аккомодации, или приспособлению. Она сокращается в зависимости от расстояния, на котором находится видимый объект и меняет кривизну биологической линзы глаза – хрусталика. Этим обеспечивается чёткость зрения при взгляде на дальние и ближние предметы. Отростки ресничного тела участвую в выработке внутриглазной жидкости.
Радужная оболочка, или радужка, чаще всего уподобляется диафрагме фотоаппарата. На самом деле, конечно, всё обстоит как раз наоборот. Принцип действия многих оптических приборов придуман именно благодаря исследованию строения глаза. И фото, которые делает камера, – это лишь далёкое от совершенства подобие миллиардов ярких картин, которые фиксирует глаз. Ну, а радужка действует, как диафрагма. Она расположена в пространстве между хрусталиком и роговицей и регулирует расширение зрачка – отверстия в её центре, через которое проходит свет. Когда света слишком много, то радужка сужает зрачок. И наоборот, позволяет ему расшириться и пропустить больше фотонов, если освещение слабовато. Радужка людей имеет своеобразный рисунок и окраску, которую называют цветом глаз.
Внутренняя оболочка глазного яблока – сетчатка. Это святая святых глаза человека. Недаром её называют частью головного мозга, работающей за его пределами. Сложнейший фотохимический процесс, который происходит здесь, обеспечивает восприятие глазом картины внешнего мира. Свет превращается в нервное возбуждение и по зрительному нерву передаётся в мозг человека, где создаются образы. Это превращение производят специальные клетки-рецепторы двух видов – колбочки и палочки. Клетки вырабатывают родопсин, особый фермент, который позволяет произойти глобальному преобразованию одного вида энергии в другой в микроскопическом пространстве глаза. Колбочки отвечают за дневное, цветное зрение, а палочки трудятся в сумерках и создают образы, окрашенные оттенками серого.
На сетчатке есть две области, называемые пятнами. Это жёлтое пятно и слепое пятно. Строение глаза таково, что слепое пятно не реагирует на свет. Поверх него находятся волокна зрительного нерва, выходящего из глаза. А вот жёлтое, наоборот, наиболее чувствительно к свету. Оно находится в стороне от оптической оси. В его середине расположена центральная ямка, где сетчатка очень тонка. Это точка максимальной чувствительности оболочки. Область жёлтого пятна очень мала, но именно она позволяет человеку видеть мелкие и тонкие детали, делая их чёткими. Это зрение является центральным, а большая часть сетчатки обеспечивает периферическое зрение, позволяющее ориентироваться в пространстве.
Хрусталик, расположенный за радужной оболочкой, имеет выпуклые поверхности с обеих сторон и на рисунке похож на чечевичное зерно. Его предназначение – преломление луча света. Передняя поверхность хрусталика контактирует с водянистой влагой задней камеры глаза. Циннова связка, или ресничный поясок, как бы опоясывает хрусталик, поддерживая его в подвешенном состоянии. Цилиарная мышца и циннова связка работают в паре, меняя кривизну хрусталика и перемещая фокус при аккомодации.
Зрительный акт состоит в прохождении луча света через роговицу, хрусталик и стекловидное тело на сетчатую оболочку. Отсюда информация отправляется в мозг по зрительному нерву. Мозг создаёт бесчисленное количество зрительных образов, своеобразных фото, на которых запечатлён весь мир. Строение глаза человека настолько сложно, этот орган так хрупок, что сам процесс зрения при его изучении производит впечатление настоящего чуда, которое совершается каждую секунду. Об этом стоит помнить и беречь этот поистине божественный дар.
ya-viju.ru
Рефракцией глаза называется процесс преломления световых лучей, который необходим для нормального проецирования изображения на сетчатой оболочке. Сила преломления, которая необходима для корректной работы органа зрения, равна 59,92 диоптриям.
Различают несколько видов светопреломления:
Строение рефракционного механизма представлено следующими образованиями:
Основная функция рефракции – это преломление световых лучей, для обеспечения четкого и ясного зрения. Ее выполнение возможно только при нормальном строении основных структур глаза, участвующих в этом процессе.
Если же человек рассматривает близко расположенные объекты, то срабатывает механизм аккомодации. Он усиливает силу преломления за счет изменения кривизны хрусталика – основной линзы глаза.
Возможные болезни, которые характеризуются нарушением нормального преломления света:
В последнем случае преломляющая способность глаза снижена. Это приводит к тому, что не происходит фокусирования лучей на сетчатке, они будут сходиться за ней.
Важно! Таким пациентам рекомендованы очки или линзы, которые имеют большую силу преломления. Однако их надо подбирать индивидуально.
Миопический глаз характеризуется высокой преломляющей способностью, поэтому изображение проецируется впереди сетчатки. Как в одном, так и в другом случае отмечается нечеткое зрение, связанное с отсутствием проецирования изображения на сетчатой оболочке. Чем выше эта разница, тем менее четким оно является.
Принято различать три основные степени рефракционных нарушений:
Имеется еще одна патология, называемая астигматизмом. Она характеризуется тем, что разные участки роговицы имеют разную преломляющую силу. Это приводит к нечеткости зрения.
Основные симптомы, которые соответствуют нарушенной преломляющей способности глазного яблока:
Диагностика при аномальной рефракции направлена на:
Рефрактометрия – это диагностическая процедура, которая позволяет оценить степень преломления, присущую каждому глазу. В настоящее время этот процесс полностью автоматизирован, что позволяет получать достоверные данные и затрачивать на это минимум времени.
В заключение необходимо отметить, что рефракция характеризуется как способность структур глаза преломлять световые потоки. Это необходимо для проецирования изображения непосредственно на сетчатке. Только в этом случае возможно получение четкого и ясного зрительного образа. Однако так происходит не всегда. Основными нарушениями этого процесса являются либо близорукость, либо дальнозоркость, которые требуют проведения коррекции с помощью очков или линз.
yaviju.com
Большую часть информации, которая поступает из окружающей среды, человек получает с помощью зрения. Глаз человека — сложная и совершенная оптическая система. Давайте рассмотрим, как он устроен.
Глаз человека имеет шарообразную форму, диаметр его — приблизительно \(2,5\) см. Снаружи глаз окружён твёрдой непрозрачной оболочкой — склерой, которая защищает его от повреждений. Склера на передней части глаза прозрачна и называется роговой оболочкой, или роговицей, которая действует как собирающая линза и обеспечивает 75% способности глаза преломлять свет.
За роговицей располагается радужная оболочка. В радужной оболочке есть круглое отверстие — зрачок. Радужная оболочка способна деформироваться и таким образом менять диаметр зрачка. Изменение это происходит рефлекторно (без участия сознания), в зависимости от количества света, попадающего в глаз. Это свойство называется адаптацией.
Адаптация — способность глаза приспосабливаться к различной яркости наблюдаемых предметов.
Внутри глаза, непосредственно за зрачком, расположен хрусталик, представляющий собой прозрачное упругое тело, имеющее форму двояковыпуклой линзы. Кривизна поверхностей хрусталика может меняться, благодаря чему изменяется оптическая сила. Это помогает регулировать расстояние от хрусталика до изображения предмета, которое должно попасть на сетчатку. Сетчатка глаза — это его внутренняя оболочка, состоящая из разветвлённых нервных волокон и сосудов.
Аккомодация — способность человеческого глаза преломлять световые лучи таким образом, чтобы видеть одинаково хорошо как на близких, так и на средних и дальних расстояниях.
Изображение, полученное на сетчатке через зрительный нерв, поступает в мозг.
В получении изображения также принимает участие стекловидное тело — прозрачная студенистая масса, которая заполняет пространство между хрусталиком и сетчаткой. Свет, попадающий на поверхность глаза, преломляется в роговице, хрусталике и стекловидном теле. В результате на сетчатке получается действительное, перевёрнутое, уменьшенное изображение предмета.
www.yaklass.ru