1. Математические понятия. Определение математика


Предмет математики — Циклопедия

В.М. Тихомиров. Дискуссия с В.И. Арнольдом о том, что такое математика // Math-Net.Ru [1:19:00]

Предмет математики — то, что изучает математика как наука, выраженное в наиболее общей форме. Одно из возможных определений предмета математики — это изучение систем математических объектов. Проблема определения предмета математики тесно связана с проблемой определения самой математики и ее сути, что она из себя представляет.

Существуют различные подходы к определению предмета математики. В частности, в литературе высказывается мнение, что предмет математики менялся на протяжении ее развития. При этом достаточно актуальными остаются мысли, высказанные древнегреческими философами.

[править] Математические объекты

Математика непосредственно изучает системы математических объектов. Эти объекты определяются в рамках самой математики (базовые объекты — через системы аксиом). Проблема их связи с объективной реальностью («априорность математики») не имеет однозначного разрешения и выходит за рамки математики (изучается в философии математики). Математические объекты возникают как результат человеческого мышления и не существуют в объективной реальности (согласно концепциям идеалистической философии, восходящим к Платону, математические объекты существуют в умопостигаемом мире или «мире идей»). Ф. Энгельс писал в «Диалектике природы»: «…вся так называемая чистая математика занимается абстракциями… все её величины суть, строго говоря, воображаемые величины…». Идеализированные объекты появляются и в других науках, но в них они сохраняют большее сходство с реальностью, в математике их подобие объективной реальности минимальное. Математика изучает системы отношений между математическими объектами, которые также не существуют в материальном мире. Тем не менее, ряд математических теорий находит приложения в качестве основы для моделей процессов реального мира, что является основой развития ряда современных наук — см. Математизация научного знания.

[править] Определения классиков

Существует ряд классических определений математики, актуальных до сих пор.

Одно из первых определений предмета математики дал Рене Декарт[1]:

К области математики относятся только те науки, в которых рассматривается либо порядок, либо мера, и совершенно не существенно, будут ли это числа, фигуры, звёзды, звуки или что-нибудь другое, в чём отыскивается эта мера. Таким образом, должна существовать некая общая наука, объясняющая всё относящееся к порядку и мере, не входя в исследование никаких частных предметов, и эта наука должна называться не иностранным, но старым, уже вошедшим в употребление именем Всеобщей математики.

— Декарт

Лейбниц связал математику с воображением и логикой.

Универсальная математика - это логика воображения, /которая должна изучать/ … все, что в области воображения поддается точным определениям.

— Лейбниц

Определение Лейбница стало основой логицизма (философского подхода к математики, развивавшегося в XX веке).

Чистая математика является весомым доказательством знаний, приобретенных с помощью разума.

Подход Канта воплотился в интуиционизме.

Другие определения и цитаты, раскрывающие суть математики от ее классиков:

Математика – это наука о связи величин.

— Г.Грассман

Математика открывает нам отношения, существующие между вещами, с точки зрения прорядка, числа и протяженности.

— А.Рей

В природе математики не заложено необходимости исследования идеи числа и величин.

— Дж. Буль

Суть математики – в ее свободе, в том, что математик по своей воле конструирует понятия и аксиомы.

— Георг Кантор

Если кто-либо хочет коротким и выразительным словом определить саму суть математики, тот должен сказать, что это наука о бесконечности.

— Анри Пуанкаре

Любая попытка дать сколько-нибудь полное и исчерпывающее определение математики обречена, по нашему мнению, на неудачу.

— М.Кац и С.Улам

Как обоснование того, что невозможно дать окончательное определение математики на все времена, высказывается довод, что любое определение математики заключает ее в какие-то границы, а математика может обобщить и изменить любую схему, поэтому такое определение обречено быть некорректным.

В советских энциклопедиях обычно приводится определение математики, данное классиком марксизма Фридрихом Энгельсом:

Чистая математика имеет своим объектом пространственные формы и количественные отношения действительного мира

Это определение также не может быть окончательным, так как математика может изучать отношения, не являющиеся ни пространственными, ни количественными. По мнению А. Н. Колмогорова, определение Энгельса нуждается лишь в такой модернизации:

Математика — это наука о количественных отношениях и пространственно-подобных формах во всей их общности.

Во многих из определений математики, речь идет только «чистой» математике, в то же время сейчас считается, что математика включает как чистую и прикладную части, так и метаматематику (совокупность формализуемых представлений о математике).

Прикладной математикой согласно одному из подходов, можно считать совокупность теорий о системах объективной действительности и мышления, полученных интерпретацией теорий чистой математики.

Метаматематика — теория, изучающая синтаксические (формальные), семантические (содержательные) и логические свойства теорий чистой математики, то есть метаматематика занимается непротиворечивостью математических теорий и математики в целом, их полнотой, независимостью систем аксиом.

В. Н. Третьяков в своей дипломной работе «О философских проблемах математики» (Минск, 1978 г.) попытался подытожить определения классиков так:

Математика — это наука, занимающаяся построением теорий о количественных отношениях и пространственно-подобных формах во всей их общности, разрабатывающая интерпретации этих теорий на объекты действительности и проверяющая их состоятельность с точки зрения формы и содержания.

[править] Проблема обоснования математики

С появлением все новых и более абстрактных математических теорий с XIX века появился вопрос об их обосновании. Довольно очевидно, что проверить опытным путем такие теории нельзя. Поэтому обоснование математических теорий стало пониматься как получение доказательства их непротиворечивости и полноты. От работ Георга Кантора идет перевод оснований математики на язык теории множеств. Однако теория множеств столкнулась с некоторыми логическими парадоксами, что привело к необходимости пересмотра логических оснований математики.

Другим подходом к обоснованию математики стала попытка сведения математики к логике (работы Бертрана Рассела, Уайтхеда, Фреге). Появившееся в результате течение под названием «логицизм» ограничивало идеализацию и запрещал вводить такие объекты, приводящих к парадоксам в теории множеств.

Давид Гильберт предложил программу доказательства непротиворечивости математики под названием «формализм». В рамках данного подхода предполагалось последовательно формализовать все содержательные математические теории и свести обоснование теорий к доказательству непротиворечивости формы. Однако теоремы Гёделя показали, что на этом пути получить формальное доказательство непротиворечивости математики невозможно (так называемыми «финитными методами»). Тем не менее, позднее появились нефинитные доказательства непротиворечивости математики.

Еще один подход к обоснованию математики под названием «интуиционизм», восходящий к Брауэру, Вейлю и др., вводит критерий интуитивной ясности для оценки математических суждений. В рамках этого подхода также предлагается ограничивать идеализацию, например, предлагалось исключать из рассмотрения актуально бесконечные множества.

В 1945 году С. К. Клини предложил новый вариант интуиционистского понимания арифметических суждений, основанный на развитой в 1930-е годы теории алгоритмов и получивший известность под именем рекурсивной реализуемости. Дальнейшая разработка данного подхода и связанных с ним идей в научной школе А. А. Маркова привела к возникновению современной конструктивной математики.

Проблема обоснования математики остаётся открытой вплоть до настоящего времени. Существует скептический подход к возможности ее окончательного разрешения.

  1. ↑ Декарт Р. Правила для руководства ума. М.-Л.: Соцэкгиз, 1936.
  • Математическая энциклопедия — М., 1982.
  • Дементьев А. Г. Современные философские проблемы математических, естественных и технических наук. — Архангельск, 2007.
  • Клини С., Весли Р. Е. Основания интуиционистской математики с точки зрения теории рекурсивных функций / Пер. с англ. — М., Наука, 1978.
  • Третьяков В. Н. О философских проблемах математики — Минск, 1978.

cyclowiki.org

1. Математические понятия

Лекция №2

по математике

Тема: «Математические понятия»

План:

  1. Математические понятия

  2. Объем и содержание понятия. Отношения между понятиями

  3. Определение понятий

  4. Требования к определению понятий

  5. Некоторые виды определений

Понятия, которые изучаются в начальном курсе математику, обычно представляют в виде четырех групп. В первую включаются понятия, связанные с числами и операциями над ними: число, сложение, слагаемое, больше и др. Во вторую входят алгебраические понятия: выражение, равенство, уравнение и др. Третью составляют геометрические понятия: прямая, отрезок, треугольник и т.д. Четвертую группу образуют понятия, связанные с величинами и их измерением.

Как же изучить такое обилие самых разных понятий?

Прежде всего, надо иметь представление о понятии как логической категории и особенностях математических понятий.

В логике понятия рассматривают как форму мысли, отражающую объекты (предметы или явления) в их существенных и общих свойствах. Языковой формой понятия является слово или группа слов.

Составить понятие об объекте - это значит уметь отличить его от других сходных с ним объектов. Математические понятия обладают рядом особенностей. Главная заключается в том, что математические объекты, о которых необходимо составить понятие, в реальности не существуют. Математические объекты созданы умом человека. Это идеальные объекты, отражающие реальные предметы или явления. Например, в геометрии изучают форму и размеры предметов, не принимая во внимание другие их свойства: цвет, массу, твердость и т.д. От всего этого отвлекаются, абстрагируются. Поэтому в геометрии вместо слова «предмет» говорят «геометрическая фигура».

Результатом абстрагирования являются и такие математические понятия, как «число» и «величина».

Вообще математические объекты существуют лишь в мышлении человека и в тех знаках и символах, которые образуют математический язык.

К сказанному можно добавить, что, изучая пространственные формы и количественные отношения материального мира, математика не только пользуется различными приемами абстрагирования, но и само абстрагирование выступает как многоступенчатый процесс. В математике рассматривают не только понятия, появившиеся при изучении реальных предметов, но и понятия, возникшие на основе первых. Например, общее понятие функции как соответствия является обобщением понятий конкретных функций, т.е. абстракцией от абстракций.

Чтобы овладеть общими подходами к изучению понятий в начальном курсе математики, учителю необходимы знания об объеме и содержании понятия, об отношениях между понятиями и о видах определений понятий.

2. Объем и содержание понятия. Отношения между понятиями

Всякий математический объект обладает определенными свойствами. Например, квадрат имеет четыре стороны, четыре прямых угла, равные диагонали. Можно указать и другие его свойства.

Среди свойств объекта различают существенные и несущественные. Свойство считают существенным для объекта, если оно присуще этому объекту и без него он не может существовать. Например, для квадрата существенными являются все свойства, названные выше. Несущественно для квадрата ABCD свойство «сторона AD горизонтальна». Если квадрат повернуть, то сторона AD окажется расположенной по-другому (рис. 26).

Поэтому, чтобы понимать, что представляет собой данный математический объект, надо знать его существенные свойства.

Когда говорят о математическом понятии, то обычно имеют в виду множество объектов, обозначаемых одним термином (словом или группой слов). Так, говоря о квадрате, имеют в виду все геометрические фигуры, являющиеся квадратами. Считают, что множество всех квадратов составляет объем понятия «квадрат».

Вообще объем понятия - это множество всех объектов, обозначаемых одним термином.

Любое понятие имеет не только объем, но и содержание.

Содержание понятия- это множество всех существенных свойств объекта, отраженных в этом понятии.

Рассмотрим, например, понятие «прямоугольник».

Объем понятия - это множество различных прямоугольников, а в его содержание входят такие свойства прямоугольников, как «иметь четыре прямых угла», «иметь равные противоположные стороны», «иметь равные диагонали» и т.д.

Между объемом понятия и его содержанием существует взаимосвязь: если увеличивается объем понятия, то уменьшается его содержание, и наоборот. Так, например, объем понятия «квадрат» является частью объема понятия «прямоугольник», а в содержании понятия «квадрат» содержится больше свойств, чем в содержании понятия «прямоугольник» («все стороны равны», «диагонали взаимно перпендикулярны» и др.).

Любое понятие нельзя усвоить, не осознав его взаимосвязи с другими понятиями. Поэтому важно знать, в каких отношениях могут находиться понятия, и уметь устанавливать эти связи.

Отношения между понятиями тесно связаны с отношениями между их объемами, т.е. множествами.

Условимся понятия обозначать строчными буквами латинского алфавита: а, b, с,..., z.

Пусть заданы два понятия а и b. Объемы их обозначим соответственно А и В.

Если А В (А ≠ В), то говорят, что понятиеа - видовое по отношению к понятию b, а понятие b - родовое по отношению к понятию а.

Например, если а - «прямоугольник», b - «четырехугольник», то их объемы А и В находятся в отношении включения (А В и А ≠ В), поскольку всякий прямоугольник является четырехугольником. Поэтому можно утверждать, что понятие «прямоугольник» - видовое по отношению к понятию «четырехугольник», а понятие «четырехугольник» - родовое по отношению к понятию «прямоугольник».

Если А = В, то говорят, что понятия а и b тождественны.

Например, тождественны понятия «равносторонний треугольник» и «равноугольный треугольник», так как их объемы совпадают.

Если множества А и В не связаны отношением включения, то говорят, что понятия а и b не находятся в отношении рода и вида и не тождественны. Например, не связаны такими отношениями понятия «треугольник» и «прямоугольник».

Рассмотрим подробнее отношение рода и вида между понятиями. Во-первых, понятия рода и вида относительны: одно и то же понятие может быть родовым по отношению к одному понятию и видовым по отношению к другому. Например, понятие «прямоугольник» - родовое по отношению к понятию «квадрат» и видовое по отношению к понятию «четырехугольник».

Во-вторых, для данного понятия часто можно указать несколько родовых понятий. Так, для понятия «прямоугольник» родовыми являются понятия «четырехугольник», «параллелограмм», «многоугольник». Среди них можно указать ближайшее. Для понятия «прямоугольник» ближайшим является понятие «параллелограмм».

В-третьих, видовое понятие обладает всеми свойствами родового понятия. Например, квадрат, являясь видовым понятием по отношению к понятию «прямоугольник», обладает всеми свойствами, присущими прямоугольнику.

Так как объем понятия - множество, удобно, устанавливая отношения между объемами понятий, изображать их при помощи кругов Эйлера.

Установим, например, отношения между следующими парами понятий а и Ь, если:

1) а - «прямоугольник», b - «ромб»;

2) а - «многоугольник», b - «параллелограмм»;

3) а - «прямая», b - «отрезок».

В случае 1) объемы понятий пересекаются, но не одно множество не является подмножеством другого (рис. 27).

Следовательно, можно утверждать, что данные понятия а и b не находятся в отношении рода и вида.

В случае 2) объемы данных понятии находятся в отношении включения, но не совпадают - всякий параллелограмм является многоугольником, но не наоборот (рис. 28). Следовательно, можно утверждать, что понятие «параллелограмм» - видовое по отношению к понятию «многоугольник», а понятие «многоугольник» - родовое по отношению к понятию «параллелограмм».

В случае 3) объемы понятий не пересекаются, так как ни про один отрезок нельзя сказать, что он является прямой, и ни одна прямая не может быть названа отрезком (рис. 29).

Следовательно, данные понятия не находятся в отношении рода и вида.

О понятиях «прямая» и «отрезок» можно сказать, что они находятся в отношении целого и части: отрезок- часть прямой, а не ее вид. И если видовое понятие обладает всеми свойствами родового понятия, то часть не обязательно обладает всеми свойствами целого. Например, отрезок не обладает таким свойством прямой, как ее бесконечность.

studfiles.net

Математика Википедия

Матема́тика (др.-греч. μᾰθημᾰτικά[1] < μάθημα «изучение; наука») — наука о структурах, порядке и отношениях, исторически сложившаяся на основе операций подсчёта, измерения и описания формы объектов[2]. Математические объекты создаются путём идеализации свойств реальных или других математических объектов и записи этих свойств на формальном языке. Математика не относится к естественным наукам, но широко используется в них как для точной формулировки их содержания, так и для получения новых результатов. Математика — фундаментальная наука, предоставляющая (общие) языковые средства другим наукам; тем самым она выявляет их структурную взаимосвязь и способствует нахождению самых общих законов природы[3].

Основные сведения[ | код]

Идеализированные свойства исследуемых объектов либо формулируются в виде аксиом, либо перечисляются в определении соответствующих математических объектов. Затем по строгим правилам логического вывода из этих свойств выводятся другие истинные свойства (теоремы). Эта теория в совокупности образует математическую модель исследуемого объекта. Таким образом, первоначально исходя из пространственных и количественных соотношений, математика получает более абстрактные соотношения, изучение которых также является предметом современной математики[4].

Традиционно математика делится на теоретическую, выполняющую углублённый анализ внутриматематических структур, и прикладную, предоставляющую свои модели другим наукам и инженерным дисциплинам, причём некоторые из них занимают пограничное с математикой положение. В частности, формальная логика может рассматриваться и как часть философских наук, и как часть математических наук; механика — и физика, и математика; информатика, компьютерные технологии и алгоритмика относятся как к инженерии, так и к математическим наукам и т. д. В литературе было предложено много различных определений математики.

Этимология[ | код]

Слово «математика» произошло от др.-греч. μάθημα, что означает изучение, знание, наука, и др.-греч. μαθηματικός, первоначально означающе

ru-wiki.ru

План. Сущность понятия. Содержание и объем понятия. Определение математических понятий. Классификация математических понятий. Методика введения новых математических понятий

Методика изучения математических понятий

План.

  1. Сущность понятия. Содержание и объем понятия.

  2. Определение математических понятий.

  3. Классификация математических понятий.

  4. Методика введения новых математических понятий.

Любая наука представляет собой систему понятий, поэтому в математике, как и в других учебных предметах, уделяется значительное внимание обучению понятиям. Понятие относится к формам теоретического мышления, которое является рациональной ступенью познания.

1. Сущность понятия. Содержание и объем понятия. При помощи понятий мы выражаем общие, существенные признаки вещей и явлений объективной действительности.

Восприятием называется непосредственное чувственное отражение действительности в сознании человека.

Представлением называется запечатленный в нашем сознании образ предмета или явления, в данный момент нами не воспринимаемого.

Восприятие исчезает как только воздействие предмета на органы чувств человека кончается. Остается представление. Например, показываем куб, а потом его убираем. Мы знаем различные кубы, разного цвета и т.п., но мы от этого отвлекаемся, сохраняя общее и существенное.

Понятие абстрагируется от индивидуальных черт и признаков отдельных восприятий и представлений и является результатом обобщения восприятий и представлений очень большого количества однородных предметов и явлений, например: число, пирамида, окружность, прямая. Понятия образуются путем таких логических приемов, как анализ и синтез, абстрагирование и обобщение. Понятием будем называть мысль о предмете, выделяющую его существенные признаки.

Существенными признаками понятия называются такие признаки, каждый из которых необходим, а все вместе достаточны, чтобы отличить объекты данного рода от других объектов (например, параллелограмм).

В каждом понятии различают его содержание и объем.

Содержанием понятия называется совокупность существенных признаков объектов, охватываемых понятием. Основное содержание – достаточный набор свойств, т.е. все те свойства, каждое их которых, взятое отдельно, необходимо, а взятые в совокупности достаточны для отличения данного понятия от остальных.

Объемом понятия называется совокупность объектов, на которое распространяется данное понятие.

Например, понятие «человек». Содержание: живое существо, создает орудия производства, обладает способностью абстрактного мышления. Объем: все люди.

Понятие «тетраэдр». Содержание: многогранник, ограниченный четырьмя гранями, имеющими форму треугольников. Объем: множество всех тетраэдров.

Между объемом и содержанием понятия существует соотношение: чем больше содержание понятия, тем меньше его объем. Сокращение содержания понятия влечет за собой расширение его объема. Эту операцию называют обобщением понятия. Например, если из содержания понятия «равносторонний треугольник» изъять свойство «равенство всех сторон», то множество треугольников, удовлетворяющих новому содержанию, станет «шире» – будет содержать множество равносторонних треугольников в качестве подмножества. Расширение содержания понятия ведет к сужению его объема и называется ограничением (специализацией) понятия. Пример такой операции – переход от понятия тождественных преобразований к понятию сокращение дробей.

Если объем одного понятия входит как часть в объем другого понятия, то первое понятие называется видовым, а второе – родовым.

Понятия род и вид имеют относительный характер. Например, понятие «призма» является родовым по отношению к понятию «прямая призма», но видовым понятием по отношению к понятию «многогранник».

Круги Эйлера.

2. Определение математических понятий. Содержание понятия раскрывается с помощью определения.

Определение (дефиниция) понятия – это такая логическая операция, при помощи которой раскрывается основное содержание понятия или значение термина.

Определить понятие – это значит перечислить существенные признаки предметов, отображенных в данном понятии.

Задача перечисления признаков бывает нелегкой, но она упрощается, если опираться на понятия, ранее уже установленные. Понятие фиксируется в речи с помощью слова или словосочетания, называемого именем или термином понятия. В математике понятие часто обозначается не только именем, но и символом. Например, и другие.

Таким образом, в определении сначала указывается род, в который определяемое понятие входит как вид, а затем указывают те признаки, которые отличают этот вид от других видов ближайшего рода. Такой прием определения понятия называется определением понятия через ближайший род и видовое отличие.

Понятие = род + видовое отличие.

Типы определений

Вербальные Невербальные

Явные Неявные

Через род и видовые

отличия Аксиоматические Описательные

(описываются системой

аксиом)

Явными называются определения, в которых смысл определяемого термина полностью передается через смысл определяющих терминов, т.е. явные определения содержат прямое указание на существенные признаки определяемого понятия. Определение через ближайший род и видовое отличие относится к явным.

В неявных определениях смысл определяемого термина не передается полностью определяющими терминами. Пример неявного определения – определение исходных понятий с помощью системы аксиом. Такие определения называются аксиоматическими. Примеры аксиоматических определений являются определения группы, кольца и поля и т.п. (аксиоматика Гильберта, Вейля, система аксиом Пеано для натуральных чисел).

Генетическим называется определение объекта путем указания способа его построения, образования, происхождения. Например, «усеченный конус есть тело, происходящее от вращения прямоугольной трапеции вокруг стороны, перпендикулярной к основаниям трапеции». Или определение понятия «линейный угол двугранного угла».

В индуктивном (рекуррентном) определении объект задается как функция от натурального числа . Это задание обеспечивается указанием значения и некоторого равенства, связывающего значения и. Например, по индукции в математике вводится определение натурального числа.

Остенсивные определения понятий и описательные описывают объекты с помощью моделей, рассмотрения частных случаев, выделения отдельных существенных свойств, вводятся с помощью непосредственного показа, демонстрации предметов. Часто применяются в начальных классах и частично в 5-6 классах. Учитель, изображая треугольники на доске, знакомит учащихся с понятием треугольник. В средней школе преобладают вербальные определения.

Чтобы дать логически правильное определение, нужно соблюдать правила определения:

1. Определение должно быть соразмерным, то есть определяемое и определяющие понятия должны быть равны по объему. Чтобы проверить соразмерность, нужно убедиться, что определяемое понятие удовлетворяет признакам определяющего понятия и наоборот.

Например, дано определение: «Параллелограмм есть многоугольник, у которого противоположные стороны параллельны». Проверим его: «Всякий многоугольник, у которого противоположные стороны параллельны, есть параллелограмм» – это неверно. Или: «параллельными прямыми называются прямые, которые не пересекаются» (неверно, это могут быть и скрещивающиеся прямые).

2. Определение не должно содержать в себе «порочного круга». Это означает, что нельзя строить определение таким образом, чтобы определяющим понятием было такое, которое само определяется при помощи определяемого понятия.

Например, «прямым углом называется угол, содержащий , а градусом называется 1/90 часть прямого угла». Иногда «порочный круг» принимает форму тавтологии (то же посредством того же) – употребление слова, имеющего то же самое значение.

3. Определение по возможности не должно быть отрицательным. В определение должны указываться существенные признаки предмета, а не то, чем не является предмет.

Например, «ромб – это не треугольник», «эллипс – это не окружность». В математике в некоторых случаях отрицательные определения допустимы, например, «трансцендентной функцией называется всякая неалгебраическая функция».

4. Определение должно быть четким и ясным, не допускающим двусмысленных или метаморфических выражений.

Например, «арифметика есть царица математики» – образное сравнение, а не определение, утверждение «лень – мать всех пороков», поучительно, но не определяет понятие лени.

3. Классификация математических понятий. Объем понятия раскрывается путем классификации. Классификация – это систематическое распределение некоторого множества по классам, возникающее в результате последовательного деления, основанного на сходстве объектов одного вида и отличии их от объектов других видов.

Операция деления – логическая операция, раскрывающая объем понятия путем выделения в нем возможных видов объекта. Например, всех студентов педагогического университета можно разделить на собирающихся идти работать в школу и не собирающихся. Основанием деления является свойство, в соответствии с которым выделяются виды. В нашем примере основанием является свойство: «иметь намерение работать в школе».

При осуществлении классификации важен выбор основания: разные основания дают разные классификации. Классификация может производиться по существенным свойствам (естественная) и по несущественным (вспомогательная). При естественной классификации, зная к какой группе принадлежит элемент, можем судить о его свойствах.

Два вида деления:

1. деление по видоизменению признака – это деление, при котором свойство – основание деления присуще объектам выделенных видов в разной степени

2. дихотомическое деление – это деление, при котором данное понятие делится на два вида по наличию или отсутствию некоторого свойства.

Операция деления подчиняется следующим правилам:

1. деление должно быть соразмерным, т.е. объединение выделенных классов должно образовывать исходное множество (сумма объемов видовых понятий равна объему родового понятия).

2. деление должно проводится только по одному основанию.

3. пересечение классов должно быть пусто.

4. деление должно быть непрерывным.

4. Методика введения новых математических понятий. В методике преподавания математики выделяются два метода введения понятий: конкретно-индуктивный и абстрактно-дедуктивный (термины введены русским методистом К.Ф. Лебединцевым).

Схема применения конкретно-индуктивного метода.

1. Рассматриваются и анализируются примеры (анализ, сравнение, абстрагирование, обобщение,…).

2. Выясняются общие признаки понятия, которые его характеризуют.

3. Формулируется определение.

4. Определение закрепляется путем приведения примеров и контрпримеров.

5. Дальнейшее усвоение понятия и его определения проходит в процессе их применения:

а) распознавание понятия.

б) конструирование (нарисовать).

в) применение данного определения к решению задач.

Например, понятие параллелограмма.

Пример. Введение понятия – вертикальные углы.

Задания: 1. нарисуйте угол

2. постройте лучи и , противоположные данным.

3. какую фигуру образуют лучи и .

4. углы и называются вертикальными.

5. попробуйте дать определение вертикальных углов.

6. нет ли на рисунке еще вертикальных углов.

7. назовите вертикальные углы.

8. как нарисовать два вертикальных угла.

Схема применения абстрактно-дедуктивного метода.

  1. Формулируется определение понятия.

  2. Приводятся примеры и контрпримеры.

  3. Закрепляется понятие путем выполнения различных упражнений.

Например, введение квадратного уравнения, понятия декартовых координат и т.п.

При формировании понятий целесообразно применять рекомендации психолого-педагогических наук, например, теорию поэтапного формирования умственных действий П.Я. Гальперина.

1 этап. Разъясняют цель вводимого понятия, дают ориентировку.

2 этап. Учащиеся формулируют определение исходя из рисунка.

3 этап. Учащиеся формулируют определение, пользуясь громкой (внешней) речью без опоры на рисунок.

4 этап. Определение проговаривается в форме внешней речи про себя.

5 этап. Определение проговаривается в форме внутренней речи.

При изучении понятий надо варьировать несущественные признаки (принципы варьирования) – это разнообразное расположение на доске рисунков и чертежей, например, треугольника, его высоты, перпендикуляра к прямой и т.д. (не только горизонтальное расположение прямой, основания треугольника и т.п.)

Усвоению определений помогает анализ логической структуры определения. С этой целью составляются алгоритмы распознавания понятий, математические диктанты и тесты.

refdb.ru

Определение (математика) Википедия

У этого термина существуют и другие значения, см. Определение.

Определе́ние, дефини́ция (лат. definitio — предел, граница) — логическая процедура придания строго фиксированного смысла терминам языка[1]. Термин, над которым проводится операция дефиниции, называется дефидентом (Dfd).

Виды

Интенсиональные определения

Должно содержать:

  • описание свойств, характеристик объектов, выделяющих определяемое в сравнении с другими объектами соответственно;
  • пояснения смысла термина указанием правил выделения его среди прочего;
  • указание ближайшего понятия и отличительных признаков по сравнению с другими определениями других понятий.

К интенсиональному виду определений относятся собирательное и представительное определения.

Реальные и номинальные определения

Общее представление об определении строится на том, что оно понимается как суждение, выражающее суть бытия вещи. Согласно Аристотелю, существенные свойства объекта составляют его «сущность» (τò τí ėστι), и, соответственно, входят в содержание его определения[2].

Представление о том, что определение должно выражать суть вещи, впоследствии приводит к разделению на номинальную и реальную сущность. Во Второй Аналитике в этой связи Аристотель приводит аргумент, демонстрирующий, что определение может объяснять либо существование вещи, либо ее сущность: значение имени вещи (Аристотель приводит пример — «козлоолень») может быть доступно нашему пониманию и без знания «сущности» этой вещи, которую этот термин обозначал, если бы такая вещь существовала[3]. Этим объясняется введенное средневековыми схоластами разделение между так называемой quid nominis или «чтойностью имени», и лежащей в основе всего сущего природой, quid rei или «чтойностью вещей» (ранние нововременные философы такие, как Локк, использовали соответствующие английские обозначения «номинальная сущность» или «реальная сущность»). Слово «хоббит» является довольно показательным примером в этом отношении. Оно обладает quid nominis, однако никому неизвестна реальная природа хоббитов, их quid rei. В противовес, наименование «человек» обозначает реальный объект (человека) и имеет определённую quid rei. Таким образом, значение имени отлично от реальной сущности вещи, которой последняя должна обладать, чтобы соответствовать своему наименованию.

Это различение приводит к соответствующему разделению на номинальные и реальные определения. Номинальное определение является определением, объясняющим значение наименования, то есть таким, которое утверждает, что есть «номинальная сущность». Реальное определение, в противоположность, выражает реальную природу вещи — что она (эта вещь) есть.

В логике номинальное определение — это определение, посредством которого формулируется значение некоторого знакового выражения (Dfd) («Термином „пятиугольник“ мы будем обозначать многоугольники с пятью сторонами»). Реальное определение — это определение, с помощью которого объект (Dfd) (реальный или абстрактный) выделяется из других, смежных с ним объектов, по некоторому отличительному признаку («Пятиугольник — это многоугольник с пятью сторонами»). Номинальные и реальные определения взаимопереводимы; при этом, содержательная информация в каждом определении не меняется, то есть не изменяются существенные признаки, через которые определяется понятие[4].

Явные определения

Определения, в которых определяемое эквивалентно по дефиниции определяющему (Dfd≡Dfn{\displaystyle Dfd\equiv Dfn}). Родовой признак указывает на тот круг предметов, из числа которых надо выделить определяемый предмет «прибор». (напр. «барометр — это прибор для измерения атмосферного давления»)

Генетическое определение

Определение предмета путём указания на способ, которым образуется только данный предмет и никакой другой. Пример: «кислоты — это вещества, образующиеся из кислотных остатков и атомов водорода».

Неявные определения

На место дефиниции подставляется контекст или набор аксиом.

Аксиоматическое определение

Является фундаментальным, строится из суждений (логических выражений) как (конъюнктивная) совокупность утверждений, содержащих определяемое и определяющие понятия в этих утверждениях.

Индуктивное (рекурсивное) определение

Дефидент используется в выражении понятия, которое ему приписывается в качестве его смысла (см.: «натуральное число»).

Контекстуальное определение

Позволяет понять незнакомое слово через контекст (уравнение).

Остенсивное «определение»

Определение предмета путём указания на него, или демонстрации самого предмета. Однако стоит заметить, что остенсивные «определения» определениями вовсе и не являются[источник не указан 546 дней], поскольку совершаются на дологическом уровне.

Правила дефиниции

  1. Соразмерность дефидента (Dfd) и дефиниции (Dfn).
    • Примеры ошибок:
      • Широкое определение (Dfd < Dfn) : «Лошадь — млекопитающее и позвоночное животное».
      • Узкое определение (Dfd > Dfn): «Совесть — это осознание человеком ответственности перед самим собой за совершённые поступки».
      • В одном отношении широкое, а в другом — узкое, когда Dfn в одном отношении шире Dfd (Dfd < Dfn), а в другом — уже (Dfd > Dfn): «Бочка — это сосуд для хранения жидкостей».
  2. Определение не должно содержать круга — когда дефиниция определяется через дефидент, а дефидент был определён через дефиницию. Пример ошибки: «Халатность заключается в том, что человек халатно относится к своим обязанностям» (см.: Тавтология).
  3. Чёткость и ясность — определения не должны быть двусмысленными, не допускаются метафоры и сравнения. Пример ошибки: «Лев — царь зверей».
  4. Родовой признак должен указывать на ближайшее широкое понятие, не перескакивая через него.
  5. Видовым различием должен быть признак или группа признаков, присущих лишь данному понятию и отсутствующих у других понятий этого рода.
  6. По возможности определение не должно быть негативным и вообще предвзятым. Из отрицания признаков предмета не следует, чем он является.

Следует отличать определение от других действий, не раскрывающих полностью суть понятия:

  • описание — перечисление отличительных внешних признаков, способствующих выделению среди остальных
  • характеристика — перечисление самых важных признаков
  • сравнение — фиксирование факта совпадения или несовпадения признаков между объектами
  • демонстрация — ознакомление с понятием выяснением его рода или класса

См. также

Примечания

  1. ↑ Бочаров В. А. Определение //Новая философская энциклопедия. — М.: Мысль, 2000.
  2. ↑ Аристотель. Вторая Аналитика, гл.4. — гл. 4.
  3. ↑ Аристотель. Вторая Аналитика, Г.7..
  4. ↑ Краткий словарь по логике / под ред. Горский Д.П. и др.. — М.: Просвещение, 1991. — С. 132—133. — 208 с.

wikiredia.ru