Многие дети любят батончики «Milky Way». И мой внук, не исключение. Зная основы английского языка, он понимает, что milky - означает молочный, а way – путь, дорога. Но недавно он узнал, что создатели подразумевали под этим названием совсем не путешествие по дорогам с молочным шоколадом, а название нашей Галактики «Млечный Путь». И тут посыпался град вопросов:
Постараюсь ответить на эти вопросы. Думаю, что ответы могут пригодиться и вам в общении с вашими детьми и внуками.
Красота ночного неба, сами небесные объекты и явления привлекали внимание людей с незапамятных времен. Но до нас дошли астрономические знания, оформившиеся в науку, от учёных Древней Греции (Эллады). Так, например, картина мира Птолемея господствовала в Европе 14 веков. Но у самих древних греков представления об окружающем мире переплетались с их религиозными представлениями и мифами. Название «Млечный Путь» родом из эллинских легенд.
Когда родился мальчик, которому предстояло стать могучим героем Гераклом, его подложили на ложе спящей верховной богине Гере, чтобы он испил её грудного молока и стал бессмертным. Но Гера проснулась и оттолкнула младенца смертной, при этом её молоко расплескалось по небосводу, образуя белесую сверкающую полосу, пересекающую всю небесную сферу. Так, по представлениям эллинов появился «Млечный (молочный) Путь».
«Галактика», в переводе с древнегреческого языка, означает «Млечный Путь». Конечно, в наше время никому и в мысли не придёт верить в такое объяснение появления на нашем небе этого удивительного объекта. Так что же такое Галактика на самом деле?
Мы понимаем, что жизнь на Земле может существовать только благодаря излучениям света и тепла от огромного космического объекта, называемого Солнцем. Этот огненный шар мог бы вместить в себя по объёму 1300 000 планет, размером с Землю. Но выглядит он размером с футбольный мяч, поскольку очень далеко от нас. Оказывается, все звёздочки на нашем небе являются ничем иным, как такими же светилами, несколько отличающиеся температурой, размерами и возрастом. Просто все они удалены от нас на колоссальные космические расстояния, поэтому и смотрятся горящими искорками.
Звёзды во Вселенной распределяются не как попало. Они силам притяжения собраны в звёздные объединения, которые за счёт вращения принимают форму утолщенного в центре диска. Их то и назвали галактиками. Звёздное образование, к которому принадлежит наше Солнце, назвали «Млечный Путь». Мы видим его сбоку, поэтому оно и сверкает белесой полосой через всё небо. Практически все объекты, наблюдаемые на звёздном небе, тоже входят в нашу галактику.
Фернан Магеллан использовал в 15 веке для навигации в Южном Полушарии белесые туманности, названные в последствие Магеллановыми Облаками.
Другое такое светящееся маленькое облачко (Туманность Андромеды) ещё в 10 веке наблюдал персидский астроном Ас-Суфи.
Лишь в 19 веке учёные, вооруженные сложной оптической техникой, сумели доказать, что эти объекты расположены за пределами нашей Галактики и, так же как и «Млечный Путь», являются огромными звёздными скоплениями. Это другие, ближайшие к нам, Галактики. А их миллиарды.
travelask.ru
Объекты глубокого космоса > Галактики > Что такое галактика?
Галактическая группа Хиксона
Наверняка вы знаете, что наша система не существует обособленно. Вместе с другими звездами, Солнце располагается в галактике Млечный Путь. Но что такое галактика? Если говорить простым языком, то перед вами коллекция звезд, собравшихся на определенном участке при помощи гравитационной силы.
Мы многое узнали о родной галактике, поэтому давайте рассматривать понятие сквозь Млечный Путь. Относится к спиральному типу и вмещает яркое ядро, плотно наполненное звездами. Остальные звезды вращаются вокруг, создавая приплюснутый диск. Всего насчитывают 200-400 миллиардов звезд. Обладает двумя спиральными рукавами, которые выходят за ядром, а также подобием спиральной вертушки, тянущейся к внешним краям. В ширину достигает 100000 световых лет.
Стоит отметить, что наблюдаемые звезды – лишь небольшая часть всей галактики. Она также окружена гигантским ореолом темной материи. Ее нельзя рассмотреть, не контактирует с обычной материей и не производит отслеживаемый вид излучения. Но мы можем доказать ее наличие, так как она все же влияет гравитацией на другие объекты. Если звезды занимают примерно 580 миллиардов солнечных масс, то темная материя способна охватить 6 триллионов.
Но наша галактика – лишь один из примеров. Есть также эллиптические, которых намного больше. Именно здесь встречаются наибольшие представители. Например, Мессье 87 с 2.7 триллионами звезд. Наименьший тип – ультракомпактные карликовые, которые лишь немного масштабнее скоплений шарового типа.
Звезды притягиваются и формируют галактики, которые также собираются в скопления. На вершине находятся сверхскопления, способные вмещать миллионы галактик, и достигать сотни миллионов световых лет в ширину.
Схематическая история Вселенной, подчеркивающая реионизацию после формирования первых звезд и галактик. До момента их появления пространство блокировало свет
Один из самых удивительных фактов о Вселенной – она существовала не всегда. Все, что мы сейчас наблюдаем, появилось из крошечных частичек материи, которые увеличились гравитационно и посредством столкновения и слияния. Когда мы смотрим на отдаленные объекты, то видим свет, который испускался миллионы или миллиарды лет назад (зависит от дистанции).
Однажды технологии достигнут того уровня, что мы увидим Вселенную, лишенную галактик и звезд. Мы ждем запуска телескопа Джеймса Уэбба в 2018 году, но сейчас располагаем удивительной пятеркой фактов о наиболее отдаленных объектах.
Протопланетные диски, из которых формируются все солнечные системы, в итоге сольются в планеты. Но, когда пространство наполнено только водородом и гелием, то появляются исключительно газообразные планеты
Галактики вроде Млечного Пути – распространенный тип. Но молодые формирования чаще намного меньше, голубого окраса и насыщеннее газом
Глубокое поле Хаббла – первое углубленное представление о Вселенной, демонстрирующее галактики, когда пространство достигало 3-4% от сегодняшнего возраста. Но это максимальная удаленность, на которую удается пробиться телескопу
Скопление R136 туманности Тарантул в Большом Магеллановом Облаке располагает наиболее древними звездами. Самая крупная – R136a1, превышающая солнечную массивность в 250 раз
Поглощение волны миллиметрового диапазона от электронов вокруг мощных магнитных полей, создаваемых галактической сверхмассивной черной дырой. Это проводит к наблюдаемому в центре темному пятну. Тень показывает, что там присутствуют прохладные облака молекулярного газа
Крупномасштабная вселенская структура меняется со временем, потому что крошечные частички постоянно сливаются и разрастаются в более крупные объекты, формируя звезды и галактики. Молодая Вселенная показывает, каким наш регион был в прошлом
Отметьте, что ультра-отдаленные, ультра-молодые и ультра-крошечные галактики не будут всегда такими вытянутыми. Все соседние галактики раньше напоминали те, что мы видим на больших удаленностях. Первые разрастались быстрее всего. По мере развития, они накапливали материал, сливались с другими и становились крупными спиралями или эллиптическим типом. Пока нам неизвестно прошлое Млечного Пути, но мы надеемся исправить это с дальнейшими наблюдениями.
v-kosmose.com
Многие факты, известные сегодня, кажутся такими знакомыми и привычными, что трудно представить, как раньше жили без них. Однако научные истины в большинстве своем возникли не на заре человечества. Во многом это касается познаний о космическом пространстве. Виды туманностей, галактик, звезд сегодня известны почти каждому. Между тем путь к современному пониманию строения Вселенной был достаточно длительным. Люди далеко не сразу осознали, что планета — часть Солнечной системы, а она — Галактики. Виды галактик стали изучаться в астрономии еще позже, когда пришло понимание, что Млечный путь не одинок и им Вселенная не ограничивается. Основоположником классификации, как и вообще познания космоса вне «молочной дороги», стал Эдвин Хаббл. Благодаря его исследованиям сегодня мы очень многое знаем о галактиках.
Хаббл изучал туманности и доказал, что многие из них являются формированиями, схожими с Млечным путем. На основе собранного материала он описал, какой вид имеет галактика и какие типы подобных космических объектов существуют. Хаббл измерил расстояния до некоторых из них и предложил свою классификацию. Ей ученые пользуются и сегодня.
Все множество систем во Вселенной он разделил на 3 вида: галактики эллиптические, спиралевидные и неправильные. Каждый тип активно изучается астрономами всего мира.
Кусочек Вселенной, где расположена Земля, Млечный путь, относится к типу «спиралевидные галактики». Виды галактик выделяются на основе различий их форм, влияющих на определенные свойства объектов.
Виды галактик распространены по Вселенной не одинаково. По современным данным чаще других встречаются спиралевидные. Кроме Млечного пути к этому типу относится Туманность Андромеды (М31) и галактика в созвездии Треугольника (М33). Подобные объекты имеют легко узнаваемое строение. Если посмотреть со стороны, как выглядит такая галактика, вид сверху будет напоминать расходящиеся по воде концентрические круги. От сферического центрального утолщения, называемого балджем, расходятся спиральные рукава. Число таких ответвлений бывает разным — от 2 до 10. Весь диск со спиральными рукавами находится внутри разреженного облака звезд, которое в астрономии называется «гало». Ядро же галактики представляет собой скопление светил.
В астрономии для обозначения спиралевидных галактик используется буква S. Их делят на типы в зависимости от структурной оформленности рукавов и особенностей общей формы:
галактика Sa: рукава туго закрученные, гладкие и неоформленные, балдж яркий и протяженный;
галактика Sb: рукава мощные, четкие, балдж менее выражен;
галактика Sc: рукава хорошо развиты, представляют собой клочковатую структуру, балдж просматривается плохо.
Кроме того, некоторые спиральные системы обладают центральной практически прямой перемычкой (ее называют «бар»). В обозначение галактики в этом случае добавляется буква B (Sba или Sbc).
Образование спиралевидных галактик, судя по всему, схоже с появлением волн от удара камня по поверхности воды. К возникновению рукавов, по мнению ученых, привел некий толчок. Сами спиральные ответвления представляют собой волны повышенной плотности вещества. Природа толчка может быть различной, один из вариантов — перемещения в центральной массе звезд.
Спиральные ответвления — это молодые звезды и нейтральный газ (основной элемент — водород). Они лежат в плоскости вращения галактики, потому она напоминает сплющенный диск. Образование молодых звезд возможно и в центре таких систем.
Туманность Андромеды — спиралевидная галактика: вид сверху на нее выявляет несколько рукавов, исходящих из общего центра. С Земли невооруженным глазом ее можно увидеть как размытое туманное пятно. По своим размерам соседка нашей галактики несколько превосходит ее: 130 тысяч световых лет в диаметре.
Туманность Андромеды хотя и самая близкая к Млечному пути галактика, а расстояние до нее огромно. Свету для того, чтобы преодолеть его, требуется два миллиона лет. Этот факт отлично объясняет, почему полеты к соседней галактике пока возможны только в фантастических книгах и фильмах.
Рассмотрим теперь другие виды галактик. Фото эллиптической системы хорошо демонстрирует ее отличие от спиралевидного собрата. У такой галактики нет рукавов. Она похожа на эллипс. Подобные системы могут быть сжатыми в разной степени, представлять собой нечто вроде линзы или же шара. В таких галактиках практически не встречается холодный газ. Наиболее внушительные представители этого типа заполнены разреженным горячим газом, температура которого достигает миллиона градусов и выше.
Отличительная черта многих эллиптических галактик — красноватый оттенок. Долгое время астрономы полагали это признаком древности таких систем. Считалось, что они в основном состоят из старых звезд. Однако исследования последних десятилетий показали ошибочность этого предположения.
Долгое время бытовала еще одна гипотеза, связанная с эллиптическими галактиками. Они считались самыми первыми из возникших, сформировавшимися вскоре после Большого взрыва. Сегодня эта теория считается устаревшей. Большой вклад в ее опровержение внесли немецкие астрономы Алар и Юрий Тумре, а также американский ученый Франсуа Швайцер. Их исследования и открытия последних лет подтверждают истинность другой гипотезы, иерархической модели развития. Согласно ей более крупные структуры формировались из достаточно небольших, то есть галактики образовались далеко не сразу. Их появлению предшествовало образование звездных скоплений.
Эллиптические системы по современным представлениям сформировались из спиралевидных в результате слияния рукавов. Одно из подтверждений этого — большое количество «закрученных» галактик, наблюдаемое в удаленных участках космоса. Напротив, в наиболее приближенных областях заметно выше концентрация эллиптических систем, достаточно ярких и протяженных.
Эллиптические галактики в астрономии также получили свои обозначения. Для них используют символ «Е» и цифры от 0 до 6, которыми указывается степень уплощения системы. Е0 — это галактики практически правильной шаровой формы, а Е6 — самые плоские.
К эллиптическим галактикам относятся системы NGC 5128 из созвездия Кентавра и М87, расположенное в Деве. Их особенностью является мощное радиоизлучение. Астрономов в первую очередь интересует устройство центральной части таких галактик. Наблюдения российских ученых и исследования телескопа Хаббла показывают достаточно высокую активность этой зоны. В 1999 году американские астрономы получили данные о ядре эллиптической галактике NGC 5128 (созвездие Кентавр). Там в постоянном движении находятся огромные массы горячего газа, закручивающегося вокруг центра, возможно, черной дыры. Точных данных о природе таких процессов пока нет.
Внешний вид галактики третьего типа не структурирован. Такие системы представляют собой клочковатые объекты хаотичной формы. Неправильные галактики встречаются на просторах космоса реже других, однако их изучение способствует более точному понимаю протекающих во Вселенной процессов. До 50% массы таких систем составляет газ. В астрономии принято обозначать подобные галактики через символ Ir.
К галактикам неправильной формы относятся две системы, наиболее близко расположенные к Млечному пути. Это его спутники: Большое и Малое Магелланово Облако. Они хорошо видны на ночном небе южного полушария. Большая из галактик расположена на расстоянии 200 тысяч световых лет от нас, а меньшую отделяет от Млечного пути — 170 000 св. лет.
Астрономы внимательно изучают просторы этих систем. И Магеллановы Облака сполна отплачивают за это: в галактиках-спутниках нередко обнаруживаются очень интересные объекты. Например, 23 февраля 1987 года в Большом Магеллановом Облаке вспыхнула сверхновая. Особый интерес вызывает и эмиссионная туманность Тарантул. Она расположена также в Большом Магеллановом Облаке. Здесь ученые обнаружили область постоянного звездообразования. Некоторым светилам, составляющим туманность, всего два миллиона лет. Кроме того, здесь же расположена самая внушительная из обнаруженных на 2011 год звезд — RMC 136a1. Ее масса составляет 256 солнечных.
Основные виды галактик описывают особенности формы и расположения элементов этих космических систем. Однако не менее интересен вопрос об их взаимодействии. Не секрет, что все объекты космоса находятся в постоянном движении. Не исключение и галактики. Виды галактик, по крайней мере, некоторые из их представителей могли образоваться в процессе слияния или столкновения двух систем.
Если вспомнить, что представляют собой такие объекты, становится понятным, насколько масштабные изменения происходят во время их взаимодействия. При столкновении высвобождается колоссальное количество энергии. Интересно, что подобные события даже более вероятны на просторах космоса, чем встреча двух звезд.
Однако не всегда «общение» галактик заканчивается столкновением и взрывом. Небольшая система может пройти сквозь своего крупного собрата, потревожив при этом его структуру. Так образуются формирования, схожие по внешнему виду с вытянутыми коридорами. Они состоят из звезд и газа и часто становятся зонами образования новых светил. Примеры таких систем хорошо известны ученым. Один из них — галактика Колесо телеги в созвездии Скульптор.
В некоторых случаях системы не соударяются, а проходят мимо друг друга или лишь слегка соприкасаются. Однако независимо от степени взаимодействия оно приводит к серьезным изменениям структуры обеих галактик.
По предположениям ученых не исключено, что через некоторое, довольно продолжительное, время Млечный путь поглотит ближайшего своего спутника, относительно недавно обнаруженную крохотную по космическим меркам систему, расположенную на расстоянии 50 световых лет от нас. Данные исследований свидетельствуют о внушительной продолжительности жизни этого спутника, которая, вероятно, закончится в процессе слияния со своим более крупным соседом.
Столкновение — возможное будущее для Млечного пути и Туманности Андромеды. Сейчас огромного соседа отделяет от нас примерно 2,9 миллиона световых лет. Две галактики приближаются друг к другу со скоростью 300 км/с. Вероятное столкновение по расчетам ученых случится через три миллиарда лет. Однако произойдет ли оно или галактики лишь слегка заденут друг друга, сегодня точно никто не знает. Для прогнозирования не хватает данных об особенностях движения обоих объектов.
Современная астрономия подробно изучает такие космические структуры, как галактики: виды галактик, особенности взаимодействия, их отличия и сходства, будущее. В этой области еще немало непонятного и требующего дополнительного изучения. Виды строения галактик известны, но нет точного понимания многих деталей, связанных, например, с их образованием. Современные темпы совершенствования знания и техники, однако, позволяют надеяться на значительные прорывы в будущем. В любом случае галактики не перестанут быть центром множества исследований. И связано это не только с любопытством, присущим всем людям. Данные о космических закономерностях и жизни звездных систем позволяют спрогнозировать будущее нашего кусочка Вселенной, галактики Млечный путь.
fb.ru
В статье рассказывается о том, что такое галактики, как они образовались, что включают в себя и каково их примерное количество в наблюдаемой зоне Вселенной.
Еще с незапамятных времен людей привлекало звездное небо. Не в силах понять или установить природу звезд и Луны, люди им часто приписывали мистическое или божественное значение, а нашему спутнику даже поклонялись. Постепенно, с развитием астрономии как науки и первых примитивных телескопов, стало ясно – наша планета вовсе не одна-единственная, и она вращается вокруг Солнца вместе с другими.
Постепенно, по мере улучшения приборов наблюдения и развития астрономии, ученым стало ясно: звезды - это тоже чьи-то «солнца», и почти наверняка вокруг них вращаются свои планеты. К сожалению, находятся они так далеко, что проверить на практике это нет никакой возможности. По крайней мере, пока. И скопления планет, и звездных систем образуют галактики. Так что такое галактики? Что они включают в себя и сколько их? В этом мы и разберемся.
Для начала, нужно вспомнить общее устройство нашей Вселенной. Есть небесные тела - это планеты, спутники, астероиды, кометы и вообще все, что не было создано человеком и что находится в космосе. Обычно, под действием гравитации более массивных объектов, она вращаются вокруг них по своим орбитам, к примеру, как Луна вокруг Земли. Те, в свою очередь, «летают» вокруг еще более массивных тел, к примеру, Солнца. Это называется звездная система. Так что такое галактики?
А галактики - это скопления звезд и звездных систем, которые вращаются, в свою очередь, вокруг общего центра масс. Проще говоря, это великое множество планетных систем, звезд, темной материи, межзвездного газа, метеоритов, карликовых планет и астероидов, которые под действием взаимной гравитации собрались вместе и вращаются вокруг центра масс. Так что мы разобрали, что такое галактика, определение стало понятным. Но сколько их? И какие они бывают?
Наша галактика, в которой находится Земля, Солнце и прочие небесные тела, называется Млечный Путь.
Очень долгое время, вплоть до конца XX века, технологии не позволяли увидеть отдельные звезды в чужих галактиках - не хватало разрешающей способности телескопов, а цифровые методы обработки изображений были далеки от идеала. Но затем все изменилось, и к 90-м годам прошлого столетия ученые могли наблюдать более 30 звездных скоплений, в которых удавалось разобрать отдельные светила.
Они также различаются своей формой. Есть эллиптические, спиралевидные дисковые, линзовидные, карликовые, неправильные и т.п. К примеру, наша галактика - спиралевидная, с отдельными «рукавами». К сожалению, в изучении других ученые продвинулись совсем мало, впрочем, как и в исследовании нашей. Все дело в огромных расстояниях, а также скоплениях межзвездной пыли, которая поглощает свет. Именно из-за нее мы не видим большинства звезд, а иначе, ночь мало бы чем отличалась от дня.
Когда рассказывают про галактики детям, их чаще всего интересует вопрос о количестве. И ответить так, чтобы удовлетворить детское любопытство, сложно. Конечно, можно назвать определенное число, но это будет неправда. Наша Вселенная бесконечна, и более того, постоянно расширяется, где-то происходит образование новых звезд, планетных систем, и найти границу ее невозможно. А значит, и количество галактик не поддается исчислению.
Как уже было сказано, из-за пыли мы видим лишь крохотную часть Вселенной, и примерное количество галактик в ней составляет более 100 миллиардов. И, к сожалению, даже до самых близких добраться сейчас невозможно.
Как ни странно, но движутся не только планеты вокруг звезд или спутники с кометами и метеоритами, но и галактики. Движение это не столь заметно как, к примеру, Земли вокруг Солнца. Скорость зависит от массы, плотности межзвездного газа и прочего.
Теперь мы разобрались с тем, что такое галактика, и сколько их, тоже выяснили. На данный момент единственная возможность их изучения, это наблюдение через земные или орбитальные телескопы, как в видимом спектре света, так и в инфракрасном или рентгеновском. Наиболее известный такой телескоп называется «Хаббл», выведен он на околоземную орбиту в 1990 году.
Теперь мы окончательно разобрались с тем, что такое галактики.
www.syl.ru
Полная масса Г., включая все звёзды и межзвёздное вещество, оценивается в 1011 масс Солнца, т. е. около 1044г. Как показывают результаты детальных исследований, строение Г. схоже со строением большой галактики в созвездии Андромеды, галактики в созвездии Волос Вероники и др. Однако, находясь внутри Г., мы не можем видеть всю её структуру в целом, что затрудняет её изучение.
Впервые звёздную природу Млечного Пути обнаружил Г. Галилей в 1610, но последовательное изучение строения Г. началось лишь в конце 18 в., когда В. Гершель, применив свой «метод черпков», подсчитал числа звёзд, видимых в его телескоп в различных направлениях. На основании результатов этих наблюдений он высказал предположение, что наблюдаемые звёзды образуют гигантскую систему сплюснутой формы. В. Я. Струве обнаружил (1847), что число звёзд в единице объёма увеличивается с приближением к галактической плоскости, что межзвёздное пространство не идеально прозрачно, а Солнце не расположено в центре Г. В 1859 М. А. Ковальский указал на вероятное осевое вращение всей системы Г. Первые более или менее обоснованные оценки размеров Г. выполнили немецким астроном X. Зелигер и голландским астроном Я. Каптейн в 1-й четверти 20 в. Зелигер, допуская неравномерное распределение звёзд в пространстве и различную их светимость, заключил, что поверхности одинаковой звёздной плотности являются эллипсоидами вращения со сжатием 1:5. Однако из-за неучёта искажающего влияния межзвёздного поглощения света звёзд многие из первых выводов были ошибочными; в частности, оказались преувеличенными размеры Г. При определениях положения Солнца (Земли) в Г. большинство исследователей относило его к центру Г., главной причиной чего было также игнорирование влияния поглощения света. Такой взгляд поддерживался также и живучестью геоцентрического и антропоцентрического миропредставления. В 20-х гг. 20 в. американский астроном Х. Шепли окончательно доказал нецентральное положение Солнца в Г., определив при этом направление на центр Г. (в созвездии Стрельца).В середине 20-х гг. 20 в. Г. Стрёмберг (США), изучая закономерности движения Солнца относительно различных групп звёзд, обнаружил т. н. асимметрию звёздных движений, которая дала фактический материал для обоснования многих выводов о сложности строения Г. Швед. астроном Б. Линдблад (20-е гг. 20 в.), изучая динамику и строение Г. на основе анализа скоростей звёзд, обнаружил сложность строения Г. и принципиальное различие пространственных скоростей звёзд, населяющих разные части Г., хотя все они и связаны в единую систему, симметричную относительно галактической плоскости. Голландским астроном Я. Оорт в 1927 на основе статистического изучения лучевых скоростей и собственных движений звёзд доказал существование вращения Г. вокруг собственной малой оси. При этом оказалось, что внутренние, более близкие к центру, части Г. вращаются быстрее, чем внешние. На расстоянии Солнца от центра Г. (10 килопарсек) эта скорость около 250 км/сек; период полного оборота — около 180 млн. лет.
Доказательство межзвёздного поглощения света звёзд (1930, сов. астроном Б. А. Воронцов-Вельяминов, американский астроном Р. Трамплер), его количественные оценки и учёт позволили уточнить расстояния до отдельных галактических объектов и размеры Г., положили начало выявлению деталей её структуры. Многочисленные исследования пространственного распределения звёзд различных типов (советский астроном П. П. Паренаго и др.), собственных движений звёзд (ранние работы С. К. Костинского на Пулковской обсерватории, американского астронома В. Боса и др.), движения Солнца в пространстве, а также и движений звёздных потоков (советским астроном В. Г. Фесенков, голландским астроном А. Блау и др.), изучение галактического гравитационного поля и др. позволили открыть, с одной стороны, много общих закономерностей, а с другой — большое разнообразие в кинематических, физических и структурных характеристиках отдельных составляющих Г.
В 30-е и последующие годы 20 в. значительных успехов в области исследований Г. достигли советские астрономические обсерватории, Важные результаты получены: в области динамики звёздных систем; в наблюдениях и составлении многочисленных каталогов параметров звёзд и др. галактических объектов; в развитии новых взглядов на природу межзвёздной среды; в разработке новых теорий и методов, позволивших выполнить количественные оценки параметров, характеризующих поглощение в галактическом пространстве; в выяснении связей между звёздами и межзвёздным веществом. В избранных областях Млечного Пути проведены по плану Г. А. Шайна (СССР) и по комплексному плану П. П. Паренаго фотометрия и спектральная классификация десятков тысяч звёзд. Огромное значение для понимания процессов развития Г. имело открытие звёздных ассоциаций (См. Звёздные ассоциации). Большую роль в изучении Г. сыграли успехи советской науки о переменных звёздах. Сопоставление их физических особенностей и морфологических характеристик с возрастными и пространственными параметрами позволило решить ряд задач структуры и природы Г. Исследования советских и американских астрономов сделали очевидным сложное строение Г. Оказалось, что различным частям Г. соответствуют различные, вполне определенные элементы их состава. В 1948 советские исследователи в результате наблюдений в инфракрасных лучах впервые получили изображение ядра Г. Наблюдения 50-х гг. 20 в. показали наличие у нашей Г. спиральных рукавов. Изучение Г., её строения и развития — предмет, в первую очередь, трёх разделов астрономии: звёздной астрономии, астрометрии и астрофизики. Все эти разделы сыграли большую роль в уточнении и детализации наших представлений о Г. Большое значение для исследования Г. имело развитие радиоастрономии, получившей много новых сведений о Г. Радиоастрономические наблюдения позволили обнаружить большое количество источников излучения в радиодиапазоне в межзвёздных пространствах Г., массы нейтрального водорода, изучить их движения, выяснить общие черты внутреннего строения Г.К началу 70-х гг. 20 в. в результате исследований, выполненных в СССР и за рубежом, сложилось следующее представление о Г. Степень общей сплюснутости Г., т. е. отношение толщины Г. к её экваториальному диаметру, составляет примерно 1:10, хотя резко очерченных границ Г. не имеет, Толщина расположенного вдоль плоскости галактического экватора слоя, внутри которого находится большинство звёзд и основной массы межзвёздного вещества, равна 400—500 парсек. Пространственная плотность звёзд в нём такова, что одна звезда приходится на объём, равный кубу с ребром в 2 парсека. В окрестностях Солнца плотность несколько меньше. Она значительно возрастает по мере приближения к центру Г., который при наблюдении с Земли виден в созвездии Стрельца. Следовательно, распределение звёзд характеризуется концентрацией как к плоскости Г., так и к её центру. Общая масса межзвёздного газа в Г. составляет около 0,05 массы всех звёзд, и его средня плотность близ плоскости экватора не превосходит 10-25 или 10-24г/см3. Межзвёздная пыль, состоящая из твёрдых частичек, радиусы которых порядка 10-4—10-5см, в своей массе примерно в 100 раз меньше массы газа. Не влияя из-за ничтожной массы на динамику Г., пыль тем не менее заметно влияет на видимую структуру Г., рассеивая свет звёзд, проходящий через её среду. Ядро Г., будучи погружено в относительно плотные массы межзвёздного вещества, мало доступно оптическим наблюдениям, но радиоастрономические наблюдения указывают на активность ядра, присутствие в нём больших масс вещества и источников энергии.
Г. имеет резко выраженное подсистемное строение; различают три подсистемы: плоскую, промежуточную и сферическую. Плоская подсистема характеризуется наличием молодых горячих звёзд, переменных звёзд типа долгопериодических цефеид, звёздных ассоциаций, рассеянных звёздных скоплений и газо-пылевого вещества. Все они сосредоточены у галактической плоскости в форме экваториального диска (толщиной 1/20 поперечника Г.). Средний возраст звёздного населения диска около 3 млрд. лет. Слабее концентрируются к плоскости Г. жёлтые и красные звёзды-карлики и звёзды-гиганты, занимающие объём в виде сильно сплюснутого эллипсоида. Все субкарлики, жёлтые и красные гиганты, переменные звёзды типа короткопериодических цефеид и шаровые звёздные скопления образуют сферическую составляющую (иногда называется гало), заполняя сферический объём (со средним диаметром, превышающим 30 тыс. парсек, т. е. 100 тыс. световых лет) с резким падением плотности в направлении от центральных областей к периферии. Её возраст более 5 млрд. лет. Объекты различных составляющих отличаются друг от друга также и скоростями движения, и химическим составом. Звёзды плоской составляющей имеют большие скорости движения относительно центра Г. и они богаче металлами. Это указывает на то, что звёзды разных типов, относящиеся к разным подсистемам, формировались при различных начальных условиях и в различных областях пространства, занимаемого галактическим веществом. Вся галактическая система погружена в обширную газовую массу, которую иногда называют галактической короной (См. Галактическая корона). Из центральной области Г. распространяются вдоль галактической плоскости спиральные ветви, которые, огибая ядро и разветвляясь, постепенно расширяются, теряя яркость. Спиральной структурой, оказавшейся весьма характерным свойством галактик на некотором этапе их эволюции, Г. сходна с множеством др. звёздных систем того же типа, что и она, имеющих такой же звёздный состав. В развитии спиральной структуры, по-видимому, играют роль гравитационные силы и магнитогидродинамические явления, при этом на неё влияют и особенности вращения Г. Вдоль спиральных ветвей происходит звездообразование и они населены наиболее молодыми галактическими объектами.Вопросы эволюции Г. в целом или отдельных её составных элементов имеют большое мировоззренческое значение. В течение долгого времени господствовал взгляд об одновременном образовании всех звёзд и др. объектов Г. Такой взгляд связывался с признанием единовременного происхождения всех галактик в одной точке Вселенной и их последующего «разбегания» в разные стороны от неё. Однако детальные исследования, основанные на многочисленных наблюдениях, привели к заключению (советским астроном В. А. Амбарцумян), что процесс звёздообразования продолжается и в настоящую эпоху.
Проблема происхождения и развития звёзд в Г. является фундаментальной проблемой. Существуют две главные, но противоположные точки зрения на формирование звёзд. Согласно первой из них, звёзды образуются из газовой материи, в значительном количестве рассеянной в Г. и наблюдаемой оптическими и радиоастрономическими методами. Газовое вещество там, где его масса и плотность достигают достаточно большой величины, сжимается и уплотняется под действием собственного притяжения, образуя холодный шар. В процессе дальнейшего сжатия температура внутри него, однако, повышается до нескольких млн. градусов; этого достаточно для возникновения термоядерных реакций, которые вместе с процессами излучения и обусловливают дальнейшую эволюцию этого шара —звезды. Согласно второй точке зрения, звёзды образуются из некоторого сверхплотного вещества. Сверхплотное вещество такого рода ещё не обнаружено и его свойства неизвестны, но то обстоятельство, что в наблюдаемой Вселенной процессы истечения масс из звёзд, деления и распада систем наблюдаются во многих случаях, процессы же образования звёзд из межзвёздного вещества не наблюдаются, говорит в пользу второй точки зрения.
Предполагается, что Г. в целом развилась в процессе конденсации первичного газового облака, богатого водородом; образовавшиеся при этом звёзды в нашу эпоху наблюдаются как звёзды сферической составляющей, бедные металлами и имеющие наибольший возраст. Первичное газовое облако, продолжая сжиматься под действием гравитационных сил, обогащалось металлами за счёт выбрасывания вещества из недр ранее образовавшихся звёзд, в которых уже в течение многих сотен млн. лет шли внутриядерные реакции и водород превращался в более тяжёлые элементы. Поэтому более позднее «поколение» звёзд, образовавшее диск Г., оказалось более богатым металлами. Эта концепция объясняет наблюдаемое распределение скоростей звёзд и расслоение последних по подсистемам. Тем не менее в изложенной картине остаётся немало противоречий. Развиваемое рядом советских астрономов представление о роли в эволюции галактик мощных взрывных отталкивательных сил, таящихся в недрах галактик, может пролить новый свет на проблему развития Г.
См. илл.
Лит.: Паренаго П. П., Курс звёздной астрономии, 3 изд., М., 1954; Бок Б. Дж. и Бок П. Ф., Млечный путь, пер. с англ., М., 1959; Курс астрофизики и звездной астрономии, т. 2, М., 1962; Бакулин П. И., Кононович Э. В., Мороз В. И., Курс общей астрономии, М., 1966.
Е. К. Харадзе.
Галактика в созвездии Волос Вероники.
Галактика в созвездии Андромеды.
Часть Млечного Пути в созвездиях Орла и Лебедя. Видны тёмные и светлые участки («туманности» и «облака»).
dic.academic.ru
Здравствуйте дорогие читатели! Давайте погрузимся в интересный мир, под названием Галактика. В этой статье мы выясним, что такое Галактика, каких она бывает типов, размеров, сколько там звезд и немного еще...
Вселенная – в широком смысле слова, это космическое пространство и звезды. Но эти звезды не разбросаны беспорядочно в космосе, а объединены в огромные «звездные острова», или галактики.
Непосредственно о Галактике.Солнце и все звезды, которые мы видим ночью, принадлежат к нашей галактике, известной под названием Млечный путь или просто Галактика.
Галактики – гигантские (до сотен млрд. звезд) звездные системы; к ним относится, в частности, наша Галактика.
Делят Галактики на: спиральные (S), эллиптические (E) и неправильные (Ir). Ближайшие к нам галактики – туманность Андромеды (S) и Магеллановы Облака (Ir). Галактики распределены неравномерно, образуя скопления.
Галактика (от греч. galaktikos – молочный) – звездная система (спиральная галактика), к которой принадлежит наше Солнце.
Приблизительно 100 млрд. звезд (общей массой 1011 от массы Солнца) магнитное поле, космические лучи, излучения (фотоны), межзвездное вещество (пыль и газ, масса которых составляет всего несколько процентов от массы всех звезд) вмещает галактика.
Большинство звезд занимают объем линзообразной формы с поперечником около 30 тыс. парсеков. Меньшая часть звезд заполняет почти сферический объем радиусом около 15 тыс. парсеков. (так называемая сферическая подсистема Галактики), концентрируясь к центру Галактики, который от нас находится в направлении созвездия Стрельца.
Изгибающаяся на ночном небе белая серебристая полоса это и есть Млечный путь. Вполне обосновано такое название.
Если в телескоп или бинокль посмотреть на эту полосу, то вы увидите, что она состоит из огромного количества звезд, которые очень плотно расположены друг к другу (сливаются в видимую картину Млечного Пути). Галактику, вы видите на самом деле, в поперечном сечении или в разрезе.
Сама Галактика имеет форму диска с выпуклостью посредине. Эта выпуклость называется ядром. На карте звездного неба оно находится в самой плотной части Млечного пути, в направлении созвездия Стрельца.
Из-за плотных скоплений звездной пыли внутрь ядра заглянуть невозможно. Группы звезд в самом диске располагаются вдоль изогнутых ветвей, спиралями исходящих от ядра. Одной из самых многочисленных спиральных галактик во Вселенной является наша Галактика.
Она вращается в космическом пространстве, как и остальные галактики. Со стороны она напоминает вращающееся огненная колесо, которое можно увидеть во время фейерверка.
Некоторые из спиральных ветвей Галактики, астрономам удалось обнаружить путем изучения расположения звезд и направления их движения. Скопление водорода в этих ветвях они отслеживают при помощи радиотелескопов.
Ближайшие ветви к Земле называются: ветвь Персея, ветвь Стрельца и ветвь Ориона. Ветвь Карины расположена ближе к ядру.
Есть основания полагать о том, что существует еще одна ветвь – Кентавра. По созвездиям, в которых можно наблюдать эти ветви, они и были названы.
Размер Галактики.Если говорить о размерах галактик, то следует отметить, что несколько крупнее среднего наша Галактика. Около 100 000 мил. звезд находятся в ней. Ее размер в ширину достигает около 100 000 световых лет.
Примерно 15 000 световых лет составляет диаметр центральной выпуклости. И всего лишь 3000 световых лет составляет толщина диска.
Примерно в 30 000 световых лет от центра, в диске Галактики на спирали Ориона, расположено Солнце. 225 миллионов лет требуется, для того, чтобы обогнуть Галактику один раз. Этот период имеет название – космический год.
Галактики образуют скопления, подобно тому, как звезды образуют Галактики. В скопление под названием Локальная Группа, входит наша Галактика. Наши ближайшие галактические соседи входят сюда же.
Это Малое и Большое Магелланово Облако, небольшие, неправильной формы галактики. В Локальную Группу входит и знаменитая Туманность Андромеды. Это чуть больше нашей, спиралевидная галактика (как я уже писала выше).
Заметно отличаются друг от друга, происходящие в ядре и в диске Галактики процессы. Расположенные в диске звезды, сравнительно молоды. Здесь много бело-голубых и ярко-голубых звезд.
Некоторые, слившись воедино, образуют открытые скопления. Например, Семь Сестер или Плеяды в созвездии Тельца.
В диске между звездами находятся облака газа и пыли, они называются туманностями. Звезды рождаются именно из этих туманностей. Считается, что на долю туманностей приходится почти одна десятая массы всей Галактики.
Материю также содержат облака пыли и газа. Эта материя, разлетевшаяся в пространстве при разрыве умирающих звезд и рождении супернов. Из металлов состоит часть этой материи. Поэтому, частицы металлов содержат рождающиеся в этих облаках звезды.
Таким образом, типичная звезда, расположенная в диске, — это молодая и горячая звезда, содержащая значительное количество различных металлов. Такие звезды в астрономии называются «звездами плоской составляющей».
В ядре.Плотно населяющие ядро Галактики звезды, в основном, принадлежат к разряду старых красных звезд. При космическом взрыве, во время которого возникла и Галактика, образовалось большинство из этих звезд.
Этот взрыв был, приблизительно, 12 000 миллионов лет назад. Значительно моложе звезды дисковой составляющей: например, Солнцу 5 000 миллионов лет.
«Звездами сферической составляющей» называются старые красные звезды ядра. Их состав отличается от «звезд плоской составляющей». В них мало металлов, поскольку они образовались из туманностей гелия и водорода, до того, как туда попали тяжелые элементы.
И на некотором расстоянии от сферической выпуклости также находятся старые красные звезды, там они образуют своеобразное сферическое «кольцо» вокруг всей Галактики.
Любопытные образования, состоящие из сотен тысяч таких звезд, по форме напоминающие перчатку, разбросаны тут и там. Эти образования называются «шаровыми скоплениями».
В Южном полушарии, невооруженным взглядом, можно увидеть два самых ярких шаровых скопления – это Омега Центавра и 47 Тукан. 200 шаровых скоплений, в общей сложности нам известно.
Как ни странно, шаровые скопления и другие звезды в кольце не вращаются вместе с остальной частью Галактики. Они движутся вокруг галактического центра по своим орбитам. Считается, что до сих под они движутся по тем траекториям, которые прочертили в момент своего рождения одновременно с Галактикой.
Проникнуть далеко вглубь ядра Галактики, астрономы имеют возможность при помощи радиотелескопов. Они открыли, что в ядре находятся кольца вращающегося и расширяющегося газа, часть которого достигает очень высоких температур (10 000 °С).
Кольцо газовых облаков проходит вблизи галактического центра с огромной скоростью. На месте его можно удержать только при условии, что гигантский объект расположен в центре, а его масса, примерно в 5 миллионов раз, превышает солнечную массу.
Очень мощные радиосигналы исходят из самого сердца Галактики. Их источник известен под названием «Стрелец А». Этот участок излучает и рентгеновские лучи.
Астрономы полагают, что такую энергию способна вырабатывать только черная дыра. Это вполне соответствует теории об удерживающем газовые облака на месте, гигантском объекте. Считается, что черные дыры находятся в центре большинства галактик.
В конце галактического путешествия хотелось бы отметить еще раз, что Галактики составляют Вселенную, и если Вы думаете, что Галактика — это бесконечно большое пространство, тогда представьте себе Вселенную. Ну что, представили? Если да, то читайте о Вселенной и смотрите видео сравнения звезд в следующей статье 🙂
o-planete.ru
Галактики появились на свет вскоре после звезд. Считается, что первые светила вспыхнули никак не позднее, чем спустя 150 млн лет после Большого взрыва. В январе 2011 года команда астрономов, обрабатывавших информацию с космического телескопа «Хаббл», сообщила о вероятном наблюдении галактики, чей свет ушел в космос через 480 млн лет после Большого взрыва. В апреле еще одна исследовательская группа обнаружила галактику, которая, по всей вероятности, уже вполне сформировалась, когда юной Вселенной было около 200 млн лет.
Условия для рождения звезд и галактик возникли задолго до его начала. Когда Вселенная прошла возрастную отметку в 400 000 лет, плазма в космическом пространстве заменилась смесью из нейтрального гелия и водорода. Этот газ был еще чересчур горяч, чтобы стянуться в молекулярные облака, дающие начало звездам. Однако он соседствовал с частицами темной материи, изначально распределенными в пространстве не вполне равномерно — где чуть плотнее, где разреженнее. Они не взаимодействовали с барионным газом и потому под действием взаимного притяжения свободно стягивались в зоны повышенной плотности. Согласно модельным вычислениям, уже через сотню миллионов лет после Большого взрыва в космосе образовались облака темной материи величиной с нынешнюю Солнечную систему. Они объединялись в более крупные структуры, невзирая на расширение пространства. Так возникли скопления облаков темной материи, а потом и скопления этих скоплений. Они втягивали в себя космический газ, предоставляя ему возможность сгущаться и коллапсировать. Таким путем появились первые сверхмассивные звезды, которые быстро взрывались сверхновыми и оставляли после себя черные дыры. Эти взрывы обогащали космическое пространство элементами тяжелее гелия, которые способствовали охлаждению коллапсирующих газовых облаков и потому делали возможным появление менее массивных звезд второго поколения. Такие звезды уже могли существовать миллиарды лет и потому были в состоянии формировать (опять-таки с помощью темной материи) гравитационно связанные системы. Так возникли долгоживущие галактики, в том числе и наша.
«Многие детали галактогенеза еще скрыты в тумане, — говорит Джон Корменди. — В частности, это относится к роли черных дыр. Их массы варьируют от десятков тысяч масс Солнца до абсолютного на сегодняшний день рекорда в 6,6 млрд солнечных масс, принадлежащего черной дыре из ядра эллиптической галактики М87, расположенной в 53,5 млн световых лет от Солнца. Дыры в центрах эллиптических галактик, как правило, окружены балджами, составленными из старых звезд. Спиральные галактики могут вовсе не иметь балджей или же обладать их плоскими подобиями, псевдобалджами. Масса черной дыры обычно на три порядка меньше массы балджа — естественно, если оный наличествует. Эта закономерность подтверждается наблюдениями, охватывающими дыры массой от миллиона до миллиарда солнечных масс».
Как полагает профессор Корменди, галактические черные дыры набирают массу двумя путями. Дыра, окруженная полноценным балджем, растет за счет поглощения газа, который приходит к балджу из внешней зоны галактики. Во время слияния галактик интенсивность поступления этого газа резко возрастает, что инициирует вспышки квазаров. В результате балджи и дыры эволюционируют параллельно, что и объясняет корреляцию между их массами (правда, могут работать и другие, еще неизвестные механизмы).
Исследователи из Питтсбургского университета, Калифорнийского университета в Ирвине и Атлантического университета Флориды смоделировали ситуацию столкновения Млечного пути и предшественницы карликовой эллиптической галактики в Стрельце (Sagittarius Dwarf Elliptical Galaxy, SagDEG). Они проанализировали два варианта столкновений — с легкой (3х1010 масс Солнца) и тяжелой (1011 масс Солнца) SagDEG. На рисунке показаны результаты 2,7 млрд лет эволюции Млечного пути без взаимодействия с карликовой галактикой и с взаимодействием с легким и тяжелым вариантом SagDEG.
Иное дело безбалджевые галактики и галактики с псевдобалджами. Массы их дыр обычно не превышают 104−106 солнечных масс. По мнению профессора Корменди, они подкармливаются газом за счет случайных процессов, которые происходят недалеко от дыры, а не простираются на целую галактику. Такая дыра растет вне зависимости от эволюции галактики или ее псевдобалджа, чем и обусловлено отсутствие корреляции между их массами.
Галактики могут увеличивать и размер, и массу. «В далеком прошлом галактики делали это гораздо эффективней, нежели в недавние космологические эпохи, — объясняет профессор астрономии и астрофизики Калифорнийского университета в Санта-Круз Гарт Иллингворт. — Темпы рождения новых звезд оценивают в терминах годового производства единицы массы звездного вещества (в этом качестве выступает масса Солнца) на единицу объема космического пространства (обычно это кубический мегапарсек). Во времена формирования первых галактик этот показатель был весьма невелик, а затем пошел в быстрый рост, продолжавшийся до тех пор, пока Вселенной не исполнилось 2 млрд лет. Еще 3 млрд лет он был относительно постоянным, потом начал снижаться почти пропорционально времени, и снижение это продолжается по сей день. Так что 7−8 млрд лет назад средний темп звездообразования в 10−20 раз превышал современный. Большинство доступных наблюдению галактик уже полностью сформировались в ту далекую эпоху».
На рисунке — результаты эволюции в различные моменты времени — начальная конфигурация (a), через 0,9 (b), 1,8 © и 2,65 млрд лет (d). Согласно модельным расчетам, бар и спиральные рукава Млечного Пути могли сформироваться в результате столкновений с SagDEG, которая изначально тянула на 50−100 миллиардов солнечных масс. Дважды она проходила сквозь диск нашей Галактики и теряла часть своей материи (и обычной, и темной), вызывая пертурбации его структуры. Нынешняя масса SagDEG не превышает десятков миллионов солнечных масс, и очередное столкновение, которое ожидают не позже, чем через 100 миллионов лет, скорее всего, станет для нее последним.
В общих чертах эта тенденция понятна. Галактики увеличиваются двумя основными способами. Во‑первых, они получают свежий материал для звездообразования, втягивая из окружающего пространства газ и частицы пыли. В течение нескольких миллиардов лет после Большого взрыва этот механизм исправно работал просто потому, что звездного сырья в космосе хватало всем. Потом, когда запасы истощились, темп звездного рождения упал. Однако галактики нашли возможность увеличивать его за счет столкновения и слияния. Правда, для реализации этого варианта необходимо, чтобы сталкивающиеся галактики располагали приличным запасом межзвездного водорода. Крупным эллиптическим галактикам, где его практически не осталось, слияние не помогает, зато в дисковидных и неправильных оно работает.
Посмотрим, что происходит при слиянии двух примерно одинаковых галактик дискового типа. Их звезды практически никогда не сталкиваются — слишком велики расстояния между ними. Однако газовый диск каждой галактики ощущает приливные силы, обусловленные притяжением соседки. Барионное вещество диска теряет часть углового момента и смещается к центру галактики, где возникают условия для взрывного роста скорости звездообразования. Часть этого вещества поглощается черными дырами, которые тоже набирают массу. В заключительной фазе объединения галактик черные дыры сливаются, а звездные диски обеих галактик теряют былую структуру и рассредоточиваются в пространстве. В итоге из пары спиральных галактик образуется одна эллиптическая. Но это отнюдь не полная картина. Излучение молодых ярких звезд способно выдуть часть водорода за пределы новорожденной галактики. В то же время активная аккреция газа на черную дыру вынуждает последнюю время от времени выстреливать в пространство струи частиц огромной энергии, подогревающие газ по всей галактике и тем препятствующие формированию новых звезд. Галактика постепенно затихает — скорее всего, навсегда.
www.popmech.ru