Доклад: Температурные шкалы и термометры. Виды термометров физика 8 класс доклад


Термометр. Виды. Устройство. Работа. Применение. Особенности

Термометр – это прибор, предназначенный для измерения температуры жидкостной, газообразной или твердой среды. Изобретателем первого устройства для измерения температуры является Галилео Галилей. Название прибора с греческого языка переводится как «измерять тепло». Первый прототип Галилея существенно отличался от современных. В более привычном виде устройство появилась спустя более чем через 200 лет, когда за изучение данного вопроса взялся шведский физик Цельсий. Он разработал систему измерения температуры, разделив термометр на шкалу от 0 до 100. В честь физика уровень температуры измеряются в градусах Цельсия.

Разновидности по принципу действия

Хотя с момента изобретения первых термометров прошло уже более через 400 лет, эти устройства до сих пор продолжают совершенствоваться. В связи с этим появляются все новые устройства, основанные на ранее не применяемых принципах действия.

Сейчас актуальными являются 7 разновидностей термометров:
  • Жидкостные.
  • Газовые.
  • Механические.
  • Электрические.
  • Термоэлектрические.
  • Волоконно-оптические.
  • Инфракрасные.
Жидкостные

Термометры относятся к самым первым приборам. Они работают на принципе расширения жидкостей при изменении температуры. Когда жидкость нагревается – она расширяется, а когда охлаждается, то сжимается. Само устройство состоит из очень тонкой стеклянной колбы, заполненной жидким веществом. Колба прикладывается к вертикальной шкале, выполненной в виде линейки. Температура измеряемой среды равна делению на шкале, на которое указывает уровень жидкости в колбе. Эти устройства являются очень точными. Их погрешность редко составляет более 0,1 градуса. В различном исполнении жидкостные приборы способны измерять температуру до +600 градусов. Их недостаток в том, что при падении колба может разбиться.

Газовые

Работают точно так же как и жидкостные, только их колбы заполняются инертным газом. Благодаря тому, что в качестве наполнителя используется газ, увеличивается диапазон измерения. Такой термометр может показывать максимальную температуру в пределах от +271 до +1000 градусов. Данные приборы обычно применяются для снятия показания температуры различных горячих веществ.

Механический

Термометр работает по принципу деформации металлической спирали. Такие приборы оснащаются стрелкой. Они внешне немного напоминает стрелочные часы. Подобные устройства используется на панели приборов автомобилей и различной спецтехнике. Главное достоинство механических термометров в их прочности. Они не боятся встряски или ударов, как модели из стекла.

Электрические

Приборы работают по физическому принципу изменения уровня сопротивления проводника при различных температурах. Чем горячее металл, тем его сопротивляемость при передаче электрического тока выше. Диапазон чувствительности электротермометров зависит от металла, который использован в качестве проводника. Для меди он составляет от -50 до +180 градусов. Более дорогие модели на платине могут указывать на температуру от -200 до +750 градусов. Такие приборы применяются как датчики температуры на производстве и в лабораториях.

Термоэлектрический

Термометр имеет в своей конструкции 2 проводника, которые измеряют температуру по физическому принципу, так называемому эффекту Зеебека. Подобные приборы имеют широкий диапазон измерения от -100 до +2500 градусов. Точность термоэлектрических устройств составляет около 0,01 градуса. Их можно встретить в промышленном производстве, когда требуется измерение высоких температур свыше 1000 градусов.

Волоконно-оптические

Делаются из оптоволокна. Это очень чувствительные датчики, которые могут измерять температуру до +400 градусов. При этом их погрешность не превышает 0,1 градуса. В основе такого термометра лежит натянутое оптоволокно, которое при изменении температуры растягивается или сжимается. Проходящий сквозь него луч света преломляется, что фиксирует оптический датчик, сопоставляющий преломление с температурой окружающей среды.

Инфракрасный

Термометр, или пирометр, является одним из самых недавних изобретений. Они имеют верхний диапазон измерения от +100 до +3000 градусов. В отличие от предыдущих разновидности термометров, они снимают показания без непосредственного контакта с измеряемым веществом. Прибор посылает инфракрасный луч на измеряемую поверхность, и на небольшом экране отображает ее температуру. При этом точность может отличаться на несколько градусов. Подобные устройства применяются для измерения уровня нагрева металлических заготовок, которые находятся в горне, корпуса двигателя и пр. Инфракрасные термометры способны показать температуры открытого пламени. Подобные устройства применяются еще в десятках различных сфер.

Разновидности по предназначению
Термометры можно классифицировать на несколько групп:
  • Медицинские.
  • Бытовые для воздуха.
  • Кухонные.
  • Промышленные.
Медицинский термометр

Медицинские термометры обычно называют градусники. Они имеют низкий диапазон измерения. Это связано с тем, что температура тела живого человека не может составлять ниже +29,5 и выше +42 градусов.

В зависимости от исполнения медицинские градусники бывают:
  • Стеклянные.
  • Цифровые.
  • Соска.
  • Кнопка.
  • Инфракрасный ушной.
  • Инфракрасный лобный.

Стеклянные термометры являются первыми, которые начали применять для медицинских целей. Данные устройства универсальны. Обычно их колбы заполняются спиртом. Раньше для таких целей использовалась ртуть. Подобные устройства имеют один большой недостаток, а именно необходимости длительного ожидания для отображения реальной температуры тела. При подмышечном исполнении продолжительность ожидания составляет не менее 5 минут.

Цифровые термометры имеют небольшой экран, на который выводится температура тела. Они способны показать точные данные спустя 30-60 секунд с момента начала измерения. Когда градусник получает конечную температуру, он создает звуковой сигнал, после которого его можно снимать. Данные приборы могут работать с погрешностью, если не очень плотно прилегают к телу. Существуют дешевые модели электронных термометров, которые снимают показания не менее долго, чем стеклянные. При этом они не создают звуковой сигнал об окончании измерения.

Термометры соски сделаны специально для маленьких детей. Устройство представляет собой соску-пустышку, которая вставляется в рот младенца. Обычно такие модели после завершения измерения подают музыкальный сигнал. Точность устройств составляет 0,1 градуса. В том случае если малыш начинает дышать через рот или плакать, отклонение от реальной температуры может быть существенным. Продолжительность измерения составляет 3-5 минут.

Термометры кнопки применяются тоже для детей возрастом до трех лет. По форме такие приборы напоминают канцелярскую кнопку, которая размещается ректально.  Данные устройства снимают показания быстро, но имеют низкую точность.

Инфракрасный ушной термометр считывает температуру из барабанной перепонки. Такое устройство способно снять измерения всего за 2-4 секунды. Оно также оснащается цифровым дисплеем и работает на батарейках. Данное устройство имеет подсветку для облегчения введения в ушной проход. Приборы подходят для измерения температуры у детей старше 3 лет и взрослых, поскольку у младенцев слишком тонкий ушной канал, в который наконечник термометра не проходит.

Инфракрасные лобные термометры просто прикладываются ко лбу. Они работают по такому же принципу, как и ушные. Одно из преимуществ таких устройств в том, что они могут действовать и бесконтактно на расстоянии 2,5 см от кожи. Таким образом, с их помощью можно измерить температуру тела ребенка не разбудив его. Скорость работы лобных термометров составляет несколько секунд.

Бытовые для воздуха

Для измерения температуры воздуха на улице или в помещении применяются бытовые термометры. Они, как правило, выполнены в стеклянном варианте и заполнены спиртом или ртутью. Обычно диапазон их измерения в уличном исполнении составляет от -50 до +50 градусов, а в комнатном от 0 до +50 градусов. Подобные приборы часто можно встретить в виде украшений для интерьера или магнита на холодильник.

Кухонные

Кухонные термометры предназначены для измерения температуры различных блюд и ингредиентов. Они могут быть механическими, электрическими или жидкостными. Их применяют в тех случаях, когда необходимо строго контролировать температуру по рецепту, к примеру, при приготовлении карамели. Обычно подобные устройства идут в комплекте с герметичным тубусом для хранения.

Промышленные

Промышленные термометры предназначены для измерения температуры в различных системах. Обычно они представляют собой приборы механического типа со стрелкой. Их можно увидеть в магистралях водяного и газового снабжения. Промышленные модели бывают электрические, инфракрасные, механические и пр. Они имеют самое большое разнообразие форм, размеров и диапазонов измерения.

Похожие темы:

 

tehpribory.ru

типы термометров, применение термометров. Статья про термометры на ЭкоЮнит

Термометр в переводе с греческого языка означает «измерять тепло». История изобретения термометра берет начало с 1597 года, когда Галилей создал термоскоп – шарик с припаянной трубкой – для определения степени нагретости воды. Этот прибор не имел шкалы, а его показания зависели от атмосферного давления. С развитием науки термометр видоизменялся. Жидкостный термометр впервые был упомянут в 1667 году, а в 1742 году шведский физик Цельсий создал термометр со шкалой, в которой точка 0 соответствовала температуре замерзания воды, а 100 – температуре ее кипения.

Мы часто пользуемся термометром для определения температуры воздуха на улице или температуры тела, однако этим применение термометра вовсе не ограничивается. На сегодняшний день существует множество способов измерить температуру вещества, а современные термометры совершенствуются до сих пор. Опишем наиболее распространенные типы измерителей температуры.

Жидкостный термометр

Принцип действия данного типа термометров основан на эффекте расширения жидкости при нагревании. Термометры, у которых в качестве жидкости используется ртуть, часто применяются в медицине для измерения температуры тела. Несмотря на токсичность ртути, ее использование позволяет определять температуру с большей точностью по сравнению с другими жидкостями, так как расширение ртути происходит по линейному закону. В метеорологии используют термометры на спирту. Это связано в первую очередь с тем, что ртуть загустевает при значении 38 °С и не годится для измерения более низких температур. Диапазон жидкостных термометров в среднем составляет от 30 °С до +600 °С, а точность не превышает одну десятую долю градуса.

Газовый термометр

Газовые термометры работают по тому же принципу, что и жидкостные, только в качестве рабочего вещества в них используется инертный газ. Этот тип термометра является аналогом манометра (прибора для измерения давления), шкала которого градуируется в единицах температуры. Основным преимуществом газового термометра является возможность измерения температур около абсолютного нуля (его диапазон составляет от 271 °С до +1000 °С). Предельно достижимая точность измерения составляет 2*10-3 °С. Получение высокой точности газового термометра является сложной задачей, поэтому такие термометры не используются в лабораторных измерениях, а применяются для первичного определения температуры вещества.

Механический термометр

Этот вид термометров работает по аналогии с газовыми и жидкостными. Температура вещества определяется в зависимости от расширения металлической спирали или ленты из биметалла. Механический термометр отличается высокой надежностью и простотой в использовании. Как самостоятельные приборы такие термометры широкого распространения не получили и в настоящее время используются в основном в качестве устройств для сигнализации и регулирования температуры в системах автоматизации.

Электрический термометр (термометр сопротивления)

В основу работы электрического термометра заложена зависимость сопротивления проводника от температуры. Сопротивление металлов линейно увеличивается с ростом температуры, поэтому именно металлы и используются для создания этого типа термометров. Полупроводники по сравнению с металлами дают большую точность измерений, однако термометры на их основе практически не выпускаются из-за сложностей, связанных с градуировкой шкалы. Диапазон термометров сопротивления напрямую зависит от рабочего металла: например, для меди он составляет от -50 °С до +180 °С, а для платины – от -200 °С до +750 °С. Электрические термометры устанавливают в качестве датчиков температуры на производстве, в лабораториях, на экспериментальных стендах. Они часто комплектуются совместно с другими измерительными устройствами

Термоэлектрический термометр

Термоэлектрический термометр также называют термопарным. Термопара представляет из себя контакт двух разных проводников, измеряющих температуру на основе эффекта Зеебека, открытого в 1822 году. Этот эффект состоит в появлении разницы потенциалов на контакте между двумя проводниками при наличии между ними градиента температур. Таким образом, через контакт при изменении температуры начинает проходить электрический ток. Преимуществом термопарных термометров является простота исполнения, широкий диапазон измерений, возможность заземления спая. Однако есть и недостатки: термопара подвержена коррозии и другим химическим процессам со временем. Максимальной точностью обладают термопары с электродами из благородных металлов и их сплавов – платиновые, платинородиевые, палладиевые, золотые. Верхняя граница измерения температуры с помощью термопары составляет 2500 °С, нижняя – около -100 °С. Точность измерения термопарного датчика может достигать 0,01 °С. Термометр на основе термопар незаменим в системах управления и контроля на производстве, а также при измерении температуры жидких, твердых, сыпучих и пористых веществ.

Волоконно-оптический термометр

С развитием технологий изготовления оптоволокна, возникли новые возможности его использования. Датчики на основе оптоволокна проявляют высокую чувствительность к различным изменениям во внешней среде. Малейшее колебание температуры, давления или натяжения волокна приводят к изменениям распространения в нем света. Оптоволоконные датчики температуры часто применяются для обеспечения безопасности на производстве, для пожарного оповещения, контроля герметичности емкостей с огнеопасными и токсичными веществами, обнаружения утечек и т. п. Диапазон таких датчиков не превышает +400 °С, а максимальная точность составляет 0,1 °С.

Инфракрасный термометр (пирометр)

В отличие от всех предыдущих типов термометров, пирометр является бесконтактным прибором. Более подробно прочитать про пирометры и его характеристики можно в отдельной статье на нашем сайте. Технический пирометр способен измерять температуру в диапазоне от 100 °С до 3000 °С, с точностью до нескольких градусов. Инфракрасные термометры удобны не только в условиях производства. Все чаще они применяются для измерения температуры тела. Это связано со многими преимуществами пирометров по сравнению с ртутными аналогами: безопасность использования, высокая точность, минимальное время на измерение температуры.

В завершение отметим, что сейчас сложно представить себе жизнь без этого универсального и незаменимого прибора. Простые термометры можно встретить в быту: они используются для поддержания температуры в утюге, стиральной машине, холодильнике, измерения температуры окружающего воздуха. Более сложные датчики устанавливают в инкубаторах, теплицах, сушильных камерах, на производстве.

Выбор термометра или датчика температуры зависит от сферы его использования, диапазона измерения, точности показаний, габаритных размеров. А в остальном – все зависит от вашей фантазии.

 

ecounit.com.ua

Реферат Термометр

скачать

Реферат на тему:

План:

    Введение
  • 1 История изобретения
  • 2 Жидкостные термометры
  • 3 Механические термометры
  • 4 Электрические термометры
  • 5 Оптические термометры
  • 6 Статьи

Введение

Термо́метр (греч. θέρμη — тепло; μετρέω — измеряю) — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

  • жидкостные
  • механические
  • электрические
  • оптические
  • газовые

1. История изобретения

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 г. он устроил нечто вроде термобароскопа (термоскоп). Галилей изучал в это время Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту h. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили спирт и удалили сосуд. Действие этого прибора основывалось на расширении мер, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дней. Изобретение термометра также приписывают лорду Бэкону, Роберт Фладду, Санкториусу, Скарпи, Корнелию Дреббелю (Cornelius Drebbel), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные сношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Ртутный медицинский термометр

Термометр Галилея

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, и они лопались, когда она замерзала; употреблять для этого винный спирт начали по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точностью. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон (Guillaume Amontons) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же стоянии барометра.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский физик Цельсий в 1742 г., но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания, и принял обратное обозначение лишь по совету М. Штёрмера. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения. Однако более удобной оказалась «перевернутая» шкала, на которой температуры таяния льда обозначили 0 С, а температуру кипения 100 С. Таким термометров впервые пользовались шведские ученые ботаник К. Линней и астроном М. Штремер. Этот термометр получил широкое распространение.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

Советский ртутный термометр

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: — 273, 15 С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

2. Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

В связи с запретом применения ртути во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация

3. Механические термометры

Механический термометр

Оконный механический термометр

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

4. Электрические термометры

Медицинский электрический термометр

Принцип работы электрических термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электрические термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Домашняя метеостанция

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

Отсюда, RT сопротивление при T °C, R0 сопротивление при 0 °C, и константы (для платинового сопротивления) —

  • см. Эффект Пельтье

5. Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

6. Статьи

  • Термометр медицинский

wreferat.baza-referat.ru

Доклад - Температурные шкалы и термометры

ДОКЛАД ПО ФИЗИКЕ

НА ТЕМУ:

ТЕМПЕРАТУРНЫЕ ШКАЛЫ, ТЕРМОМЕТРЫ

И ИХ ИЗОБРЕТАТЕЛИ

Температурные шкалы. Существует несколько градуированных температурных шкал, и за точки отсчета в них обычно взяты температуры замерзания и кипения воды. Сейчас самой распространенной в мире является шкала Цельсия. В 1742 шведский астроном Андерс Цельсий предложил 100-градусную шкалу термометра, в которой за 0 градусов принимается температура кипения воды при нормальном атмосферном давлении, а за 100 градусов — температура таяния льда. Деление шкалы составляет 1/100 этой разницы. Когда стали использовать термометры, оказалось удобнее поменять местами 0 и 100 градусов. Возможно, в этом участвовал Карл Линней (он преподавал медицину и естествознание в том же Упсальском университете, где Цельсий — астрономию), который еще в 1838 году предложил за 0 температуры принять температуру плавления льда, но, похоже, не додумался до второй реперной точки. К настоящему времени шкала Цельсия несколько изменилась: за 0°C по-прежнему принята температура таяния льда при нормальном давлении, которая от давления не очень зависит. Зато температура кипения воды при атмосферном давлении теперь равна 99,975°C, что не отражается на точности измерения практически всех термометров, кроме специальных прецизионных. Известны также температурные шкалы Фаренгейта, Кельвина, Реомюра и др. Температурная шкала Фаренгейта (во втором варианте, принятом с 1714 г.) имеет три фиксированные точки: 0° соответствовал температуре смеси воды, льда и нашатыря, 96° – температуре тела здорового человека (под мышкой или во рту). В качестве контрольной температуры для сверки различных термометров было принято значение 32° для точки таяния льда. Шкала Фаренгейта широко распространена в англоязычных странах, но ею почти не пользуются в научной литературе. Для перевода температуры по Цельсию (С) в температуру по Фаренгейту (F) существует формула F = (9/5)C + 32, а для обратного перевода – формула C = (5/9)(F32). Обе шкалы – как Фаренгейта, так и Цельсия, – весьма неудобны при проведении экспериментов в условиях, когда температура опускается ниже точки замерзания воды и выражается отрицательным числом. Для таких случаев были введены абсолютные шкалы температур, в основе которых лежит экстраполяция к так называемому абсолютному нулю – точке, в которой должно прекратиться молекулярное движение. Одна из них называется шкалой Ранкина, а другая – абсолютной термодинамической шкалой; температуры по ним измеряются в градусах Ранкина (Rа) и кельвинах (К). Обе шкалы начинаются при температуре абсолютного нуля, а точка замерзания воды соответствует 491,7 R и 273,16 K. Число градусов и кельвинов между точками замерзания и кипения воды по шкале Цельсия и абсолютной термодинамической шкале одинаково и равно 100; для шкал Фаренгейта и Ранкина оно тоже одинаково, но равно 180. Градусы Цельсия переводятся в кельвины по формуле K = C + 273,16, а градусы Фаренгейта – в градусы Ранкина по формуле R = F + 459,7. в Европе долгое время была распространена шкала Реомюра, введённая в 1730 г Рене Антуаном де Реомюром. Она построена не произвольным образом, как шкала Фаренгейта, а в соответствии с тепловым расширением спирта (в отношении 1000:1080). 1 градус Реомюра равен 1/80 части температурного интервала между точками таяния льда (0°R) и кипения воды (80°R), т. е. 1°R = 1.25°С, 1°C = 0.8°R., но в настоящее время вышла из употребления.

После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала — термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Единицей измерения температуры в этой температурной шкале является один кельвин (1 К) — одна из основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала — международная практическая. Эта шкала имеет 11 реперных точек — температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.

В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273.16 К при давлении 609 Па.

Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина — легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.

Соотношение температурной шкалы Фаренгейта и Цельсия

шкала Фаренгейта шкала Цельсия

Точка кипения 212° 100°

194° 90°

176° 80°

158° 70°

140° 60°

122° 50°

104° 40°

86° 30°

68° 20°

50° 10°

Точка замерзания 32° 0°

14° -10°

0° -17,8°

Температура абсолютного нуля -459,67° -273,15°

При переводе из шкалы Фаренгейта в шкалу Цельсия из исходной цифры вычитают 32 и умножают на 5/9.

При переводе из шкалы Цельсия в шкалу Фаренгейта исходную цифру умножают на 9/5 и прибавляют 32.

Термометры. Решающий вклад в развитие конструкции термометров внёс немец Габриэль Даниэль Фаренгейт. В1709 году он изобрёл спиртовой термометр, а в 1714 – ртутный. Он придал им ту же форму, что применяется и сейчас. Успех его термометров следует искать во введенном им новом методе очищения ртути; кроме того, перед запаиванием он кипятил жидкость в трубке.

Рене Антуан де Реомюр не одобрял применения ртути в термометрах вследствие малого коэффициента расширения ртути. В 1730 г. он предложил применять в термометрах спирт, а. В 1731 году изобрёл водно-спиртовой термометр. И поскольку Реомюр нашел, что применяемый им спирт, смешанный в пропорции 5:1 с водой, расширяется в отношении 1000:1080 при изменении температуры от точки замерзания до точки кипения воды, то предложил шкалу от 0 до 80°.

Учёные. Андерс Цельсий. Андерс Цельсий (Anders Celsius) родился 27 ноября 1701 года в Швеции. Область его интересов: астрономия, общая физика, геофизика.

Преподавал в Упсальском университете астрономию, основал там астрономическую обсерваторию.

Цельсий первым измерил яркость звезд, установил взаимосвязь между северным сиянием и колебаниями в магнитном поле Земли.

Он принимал участие в Лапландской экспедиции 1736-1737 годов по измерению меридиана. По возвращении из полярных областей Цельсий начал активную работу по организации и строительству астрономической обсерватории в Упсале и в 1740 стал ее директором. Умер Андерс Цельсий 25 марта 1744 года.

В честь него назван минерал цельзиан – разновидность бариевого полевого шпата.

Габриэль Фаренгейт. Даниэль Габриэль Фаренгейт (Daniel Gabriel Fahrenheit) (1686–1736) — немецкий физик. Родился 24 мая 1686 в Данциге (ныне Гданьск, Польша). Изучал физику в Германии, Голландии и Англии. Почти всю жизнь прожил в Голландии, где занимался изготовлением точных метеорологических приборов. В 1709 изготовил спиртовой, в 1714 – ртутный термометр, использовав новый способ очистки ртути. Для ртутного термометра Фаренгейт построил шкалу, имеющую три реперные точки: 0° соответствовал температуре смеси вода – лед – нашатырный спирт, 96° – температуре тела здорового человека, а в качестве контрольной температуры было принято значение 32° для точки таяния льда. Температура кипения чистой воды по шкале Фаренгейта составила 212°. Шкала Фаренгейта применяется во многих англоязычных странах, хотя постепенно уступает место шкале Цельсия. Помимо изготовления термометров, Фаренгейт занимался усовершенствованием барометров и гигрометров. Исследовал также зависимость изменения температуры кипения жидкости от атмосферного давления и содержания в ней солей, обнаружил явление переохлаждения воды, составил таблицы удельных весов тел. Умер Фаренгейт в Гааге 16 сентября 1736.

Рене Реомюр. Рене Антуан де Реомюр (Rene Antoin de Reaumur) родился 28 февраля 1683 года в Ла-Рошель, французский естествоиспытатель, иностранный почетный член Петербургской АН (1737). Труды по регенерации, физиологии, биологии колоний насекомых. Предложил температурную шкалу, названную его именем. Он усовершенствовал некоторые способы приготовления стали, им, одним из первых, были сделаны попытки научного обоснования некоторых процессов литья, написал работу «Искусство превращения железа в сталь». Он пришел к ценному выводу, железо, сталь, чугун, различаются по количеству некоторой примеси и добавляя эту примесь к железу, путем цементации или сплавления с чугуном Реомюр получал сталь. В 1814 году К. Каретен доказал, что этой примесью является углерод.

Реомюр дал способ приготовления матового стекла.

Сегодня память связывает его имя только лишь с изобретением долго использовавшейся температурной шкалы. На самом же деле Рене Антуан Фершант де Реомюр, живший в 1683-1757 годах, главным образом, в Париже, относился к тем учёным, универсальность которых в наше время — время узкой специализации — трудно себе представить. Реомюр был одновременно техником, физиком и естествоиспытателем. Большую известность за пределами Франции он приобрёл как энтомолог. В последние годы своей жизни Реомюр пришёл к идее, что поиски таинственной преобразующей силы следует вести в тех местах, где её проявление наиболее очевидно — при преобразовании пищи в организме, т.е. при её усвоении.

Скончался 17 октября 1757 года в замке Бермовдьер близ Сен-Жюльен-дю-Терру (Майенн).

Уильям Ранкин. Уильям Джон Макуорн Ранкин (Ренкин) (William John M. Rankine) (1820-72), шотландский инженер и физик, один из создателей технической термодинамики. Предложил теоретический цикл парового двигателя (цикл Ранкина), температурную шкалу (шкала Ранкина), нуль которой совпадает с нулем термодинамической температуры, а по размеру 1 град Р. ( °R) равен 5/9 К (шкала широкого распространения не получила).

www.ronl.ru

Lecture on Температура и термометры

Термометр Галилея Игрушка-сувенир, к самому Галилео Галилею она имеет весьма косвенное отношение. Правильное название этой занимательной и красивой вещицы: «Galileo thermometer». Назван этот термометр так, по-видимому, в честь Галилео Галилея, первым изобретшего в 1592 году термоскоп – прародитель всех термометров. Термометр Галилея представляет собой стеклянный цилиндр, наполненный водой, в котором плавают наполненные цветной жидкостью (вода + спирт + краска) стеклянные сферические сосудики. К каждому такому сферическому поплавку прикреплена снизу золотистая или серебристая бирка с выбитым на ней значением температуры. В зависимости от размера термометра количество поплавков внутри бывает от 4-х до 11-ти. Диапазон температур, измеряемых термометром, находится в районе комнатной температуры: 16-28 градусов. Температура определяется по нижнему из плавающих поплавков. Поплавки по-разному наполнены жидкостью таким образом, что их средняя плотность различна: самая маленькая плотность у верхнего, самая большая – у нижнего, но у всех близка к плотности воды, отличаясь от неё незначительно. С понижением температуры воздуха в помещении соответственно понижается температура воды в сосуде, вода сжимается, и плотность её становится больше. Мы знаем, что тела, плотность которых меньше плотности окружающей их жидкости, всплывают в ней. Так и здесь: поплавок, у которого плотность стала теперь равна плотности окружающей воды, станет всплывать, показывая понижение температуры. Чем больше всплывших пузырьков, тем температура ниже, чем меньше пузырьков плавает – тем выше (пузырьки потонули, потому что вода в сосуде от нагревания расширилась и стала менее плотной – всё легко и понятно!) Этот термометр, конечно, не очень точный, но оценить температуру с погрешностью в 0,4 – 4 градуса позволяет (в зависимости от конструкции данного термометра, т.е. от количества поплавков в нём). Но главное, он очень красив!

allyslide.com

Термометры - презентация, доклад, проект

Обратная связь

Если не удалось найти и скачать доклад-презентацию, Вы можете заказать её на нашем сайте. Мы постараемся найти нужный Вам материал и отправим по электронной почте. Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Не стесняйтесь обращаться к нам, если у вас возникли вопросы или пожелания:

Email: [email protected]

Мы в социальных сетях

Социальные сети давно стали неотъемлемой частью нашей жизни. Мы узнаем из них новости, общаемся с друзьями, участвуем в интерактивных клубах по интересам

ВКонтакте >

Что такое Myslide.ru?

Myslide.ru - это сайт презентаций, докладов, проектов в формате PowerPoint. Мы помогаем учителям, школьникам, студентам, преподавателям хранить и обмениваться своими учебными материалами с другими пользователями.

Для правообладателей >

myslide.ru

Презентация по физике "Температура и термометры"

21 слайд

Термометр Галилея Игрушка-сувенир, к самому Галилео Галилею она имеет весьма косвенное отношение. Правильное название этой занимательной и красивой вещицы: «Galileo thermometer». Назван этот термометр так, по-видимому, в честь Галилео Галилея, первым изобретшего в 1592 году термоскоп – прародитель всех термометров. Термометр Галилея представляет собой стеклянный цилиндр, наполненный водой, в котором плавают наполненные цветной жидкостью (вода + спирт + краска) стеклянные сферические сосудики. К каждому такому сферическому поплавку прикреплена снизу золотистая или серебристая бирка с выбитым на ней значением температуры. В зависимости от размера термометра количество поплавков внутри бывает от 4-х до 11-ти. Диапазон температур, измеряемых термометром, находится в районе комнатной температуры: 16-28 градусов. Температура определяется по нижнему из плавающих поплавков. Поплавки по-разному наполнены жидкостью таким образом, что их средняя плотность различна: самая маленькая плотность у верхнего, самая большая – у нижнего, но у всех близка к плотности воды, отличаясь от неё незначительно. С понижением температуры воздуха в помещении соответственно понижается температура воды в сосуде, вода сжимается, и плотность её становится больше. Мы знаем, что тела, плотность которых меньше плотности окружающей их жидкости, всплывают в ней. Так и здесь: поплавок, у которого плотность стала теперь равна плотности окружающей воды, станет всплывать, показывая понижение температуры. Чем больше всплывших пузырьков, тем температура ниже, чем меньше пузырьков плавает – тем выше (пузырьки потонули, потому что вода в сосуде от нагревания расширилась и стала менее плотной – всё легко и понятно!) Этот термометр, конечно, не очень точный, но оценить температуру с погрешностью в 0,4 – 4 градуса позволяет (в зависимости от конструкции данного термометра, т.е. от количества поплавков в нём). Но главное, он очень красив!

uslide.ru