Планета Венера (реферат). Реферат на тему венера планета 4 класс


Планета Венера (реферат)

Реферат з астрономії

на тему:

Планета Венера

Венера.

У центрі Сонячної системи знаходиться наша денна зірка – Сонце. Навколонього разом з своїми супутниками звертаються 9 великих планет: Меркурій,Венера, Земля, Марс, Юпітер, Сатурн, Уран, Нептун і Плутон.

Вік Сонячної системи був визначений ученими на підставі лабораторногоізотопного аналізу земних скельних порід, а також метеорів і доставленихна Землю космічними апаратами зразків місячного ґрунту. Виявилося, щонайстаріші з них мають вік близько 4,5 млрд. років. Тому вважається, щовсі планети сформувалися приблизно в у свій час – 4,5 – 5 млрд. роківтому. Венера, друга по близькості до Сонця планета, майже такого жрозміру, як Земля, а її маса більше 80 % земної маси. Розташована ближчедо Сонця, ніж наша планета, Венера одержує від нього в два з гаком разубільше світла і тепла, ніж Земля. Проте з тіньової сторони на Венеріпанує мороз більше 20 градусів нижче за нуль, оскільки сюди не потрапляєсонячне проміння в перебігу дуже довгого часу. Вона має дуже щільну,глибоку і дуже хмарну атмосферу, що не дозволяє нам побачити поверхнюпланети. Атмосферу – газову оболонку, на Венері, відкрив М. У.Ломоносов, в 1761 році, що так само показало схожість Венери із Землею.

Середня відстань від Венери до Сонця 108,2 млн. км; воно практичнопостійне, оскільки орбіта Венери ближча до кола, ніж у будь-якої іншоїпланети . Часом Венера підходить до Землі на відстань, менше 40мільйонів км. Стародавні греки дали цій планеті ім’я своєї кращої богиніАфродіти, римляни ж потім переінакшили по – своєму і назвали планетуВенерою, що, загалом, одне і те ж. Проте трапилося це не відразу. У свійчас вважалося, що в небі знаходиться відразу дві планети. Вірніше, тодіще зірки, одна – сліпуче яскрава, була видна вранці, інша, така ж –увечері. Їх навіть називали по – різному, поки халдейські астрономипісля довгих спостережень і ще довших роздумів не дійшли висновку, щозірка – то все – таки одна, що робить ним честь як великим фахівцям .

Світло Венери таке яскраве, що якщо на небі немає ні Сонця, ні Місяця,він примушує предмети відкидати тіні. Проте при погляді в телескоп,Венера розчаровує, і не дивно, що до останніх років її вважали“ планетоютаємниць “.

У 1930 році про Венеру з’явилася деяка інформація. Було встановлений, щоїї атмосфера полягає, в основному, з вуглекислого газу, який здатнийдіяти як свого роду покривало, затримуючи сонячне тепло. Були популярнідві картини планети. Одна малювала поверхню Венери майже повністюпокритою водою, в якій могли розвиватися примітивні форми життя, – як цебуло на Землі мільярди років тому. Інша представляла Венеру якрозжарену, суху і запорошену пустелю.

Ера автоматичних космічних зондів почалася в 1962 році, колиамериканський апарат “ Марінер – 2 “ пройшов поблизу Венери і передавінформацію, яка підтвердила що її поверхня дуже гаряча. Буловстановлено також, що період обертання Венери навколо осі -тривалий,близько 243 земних діб, – більше, ніж період обігу навколо Сонця (224,7діб), тому на Венері “доба“ довша за рік і календар абсолютнонезвичайний.

Тепер відомо, що Венера обертається у зворотному напрямі – зі сходу назахід, а не із заходу на схід, як Земля і більшість інших планет. Дляспостерігача на поверхні Венери Сонце сходить на заході, а заходить насході, хоча насправді хмарна атмосфера повністю закриває небо. Тиск уповерхні майже в 100 разів більший, ніж атмосферний тиск на рівні моряна Землі. “ Марінер – 10 “ наблизився до Венери в лютому 1974 року іпередав перші знімки верхнього шару хмар . Цей апарат тільки один разпройшов біля Венери – його основною метою була сама внутрішня планета-Меркурій. Проте знімки були високої якості і показали смугастуструктуру хмар. Вони також підтвердили, що період обертання верхньогошару хмар всього лише 4 діб, так що будова атмосфери Венерине схоже наземне. Тим часом американські дослідження радіолокацій показали, що наповерхні Венери є великі за розміром, але дрібні кратери. Походженнякратерів невідоме, але, оскільки в такій щільній атмосфері повинна бутисильна ерозія, за “геологічними“ стандартами вони навряд можуть бутидуже старими. Причиною виникнення кратерів може бути вулканізм, томугіпотезу про те, що на Венері відбуваються вулканічні процеси, поки неможна виключити. Також на Венері знайдено декілька гірських областей .Найбільший гірський район – Іштар – за площею удвічі перевищує Тибет. Уцентрі його на висоту 11 км підіймається гігантський вулканічний конус.Було знайдено, що в хмарах міститься велика кількість сірчаної кислоти (можливо, навіть фтористо- сірчаної кислоти).

Наступний важливий крок був зроблений в жовтні 1975 року, колидварадянські апарати – “ Венера – 9 “ і “ Венера – 10 “ – зробиликеровану посадку на поверхню планети і передали на Землю знімки. Знімкиретранслювали орбітальними відсіками станцій, що залишалися нанавколопланетній орбіті на висоті порядку 1500 км . Це був тріумфрадянських учених, навіть не дивлячись на те, що і “ Венера – 9 “ і “Венера – 10“ вели передачі всього лише не більш годину, покине пересталираз і назавжди діяти з – за дуже високих температурі тиску. Булознайдено, крім того, що шар хмар кінчається на висоті близько 30 км .Нижче знаходиться область гарячого їдкого туману . На висотах 50 – 70кмрозташовуються могутні хмарні шари і дмуть ураганні вітри . У поверхніВенери атмосфера дуже щільна ( всього лише в 10 разів менше густиниводи).

Венера зовсім не гостинний мир, як це коли – то передбачалося. З своєюатмосферою з вуглекислого газу, хмар з сірчаної кислоти і страшною жароювона абсолютно не придатна для людини. Під тяжкістю цієї інформаціїзвалилися деякі надії: адже менш ніж 20 років тому багато учених вважалиВенеру більш обіцяючим об’єктом для космічних досліджень, ніж Марс.Венера завжди притягала до себе погляди письменників – фантастів,поетів, вчених. Про неї і про неї багато писали і, напевно, ще багато щонапишуть і можливо навіть, що коли – небудь частина її таємницьвідкриється людині .

11 Июл 2006

ukrreferat.com

Реферат Планета Венера

Формат: doc

Дата создания: 18.12.2001

Размер: 141.02 KB

Скачать реферат

Среднее расстояние от Солнца

108,20 миллионов км

Экваториальный диаметр

12104 км

Период вращения(звёздные сутки)

243,01 земных суток

Период обращения

224,70 земных суток

Скорость движения по орбите

35,03 км/сек

Температура на поверхности

до 480 гр C0

Масса (Земля=1)

0,81

Средняя плотность вещества (вода=1)

5,25

Сила тяжести на поверхности (Земля=1)

0,93

Кол-во спутников

0

Венера – вторая после Меркурия по удаленности от Солнца (108 млн. км) планета земной группы. Она занимает промежуточное положение между Меркурием и Землей. Ее орбита имеет форму почти правильного круга, планета, почти такого же размера, как Земля. Орбита Венеры ближе к окружности, чем у любой другой планеты Солнечной Системы. Временами Венера подходит к Земле на расстояние, меньшее 40 млн. км. Венера вращается в обратном направлении - с востока на запад, а не с запада на восток, как Земля и большинство других планет, кроме Венеры и Урана. Период вращения Венеры вокруг оси относительно звёзд, звёздные сутки - длительный, около 243 земных суток,

Однако следует обратить внимание на то - что сутки, которые обычно сравнивают с годом - это солнечные сутки, синодический период вращения. Его несложно вычислить, он равен: 1/(1/243 + 1/224.7) = 116.7 земных суток. Именно столько и длятся солнечные сутки на Венере.              Плотность атмосферы  Венеры  в 35 раз больше Земной.  Давление на поверхности планеты составляет около 95 атмосфер. Состоит эта атмосфера, в  основном, из углекислого газа с примесями азота и  кислорода.  Углекислый  газ,  пропуская солнечные  лучи, позволяет нагреваться поверхности, и не выпускает  тепло  обратно в космос, что  является причиной явления, которое называется парниковым эффектом. Из-за этого поверхность Венеры сильно  разогрета.

Облачный слой Венеры, скрывающий от нас ее поверхность,  расположен на высотах 49-68 км. над поверхностью, по плотности напоминает легкий туман и состоит, в основном, из паров  80 %-ной серной  кислоты. Облака Венеры  движутся  с востока на запад с преобладающими на планете ветрами, совершая  полный  оборот вокруг ее оси за 4 дня, а освещенность на поверхности в дневное время подобна земной в серый пасмурный день.

 Большая протяженность облачного слоя делает его совершенно непрозрачным для земного наблюдателя, поэтому изучение планеты ведется в основном радиолокационными методами.  Американские радиолокационные исследования показали, что на поверхности Венеры имеются большие по размеру, но мелкие кратеры. Происхождение кратеров неизвестно, но, поскольку в такой плотной атмосфере должна быть сильная эрозия, по "геологическим" стандартам они вряд ли могут быть очень старыми. Причиной возникновения кратеров может быть и вулканизм, поэтому гипотезу о том, что на Венере происходят вулканические процессы, пока нельзя исключить. Также на Венере найдено несколько горных областей. Самый большой горный район - Иштар, по площади вдвое превышает Тибет. В центре его на высоту 11 км поднимается гигантский вулканический конус.  

 В зоне съемки "Венеры-15, -16" (спутников, которые были посланы на Венеру учёными СССР) было обнаружено около 150 ударных кратеров диаметром от 8 до 140 км. Их возраст: 0.5-1 млрд. лет.  

Анализ данных "Венеры-15,16" привел к выводу о том, что в пределах зоны съемки нет признаков "тектоники плит" - для которой характерно разделение верхней жесткой оболочки - литосферы - на несколько крупных, горизонтально передвигающихся относительно друг друга, плит. Главной движущей силой вулканических тектонических процессов на Венере, по результатам анализа данных "Венеры-15,16", представлялись вертикальные, восходящие и нисходящие, движения вещества недр планеты за счет тепловых неоднородностей - так называемых "горячих пятен" Горячие пятна существенны и в геологии Земли, но роль их все-таки второстепенна.               

Hа поверхности равнин планеты в ряде мест, зафиксированных на снимках "Магеллана" обнаружены загадочные "русла" длиной от сотен до нескольких тысяч километров и шириной от 2 до 10 км. Они имеют типичные признаки долин, прорезанных течением какой-то жидкости, расхождение и

схождение в редких случаях - нечто вроде дельты. В начале самого длинного русла, названного долиной Балтис, протяженностью около 7000 км при очень выдержанной (2-3 км) ширине находится вулкан поперечником около 100 км.       Остается загадкой, какая жидкость прорезала эти русла. Проще всего было бы считать, что они - результат термической эрозии текущим потоком лавы. Hо расчеты показывают, что на пути длиной 7000 км у потока лавы не хватит запаса тепла, чтобы безостановочно. Вероятнее всего это, например, жидкости вроде расплавленных карбонатов или расплавленной серы.

       

Открытые в ходе съемки "Венеры-15, -16" кольцевые структуры венцов на снимках "Магеллана" обнаружили существенные детали их строения. Кольцевое обрамление этих структур, обычно поперечником от 150 до 1000 км, имели радиально-концентрический рисунок. Явные аналоги венцов Венеры на других планетных телах земной группы не известны. На заснятых "Магелланом" 98% поверхности планеты удалось обнаружить около 930 ударных кратеров диаметром от 2 до 280 км.  На его снимках удалось увидеть некоторые неожиданные стороны процесса образования ударных кратеров в условиях Венеры.         Хотя у Венеры и Земли близки размеры, средняя плотность и даже внутреннее строение, тем не менее, Земля имеет достаточно сильное магнитное поле, а Венера нет. По одной из современных теорий напряженность дипольного магнитного поля зависит от прецессии полярной оси и угловой скорости вращения. Именно эти параметры на Венере ничтожно малы, но измерения указывают на еще более низкую напряженность, чем предсказывает теория. 

Вывод:

  1. Венера – крупная планета внутренней группы, лишь немного уступающая по своим размерам и массе Земле, но в 8 раз превосходящая массу Марса. Еще сравнительно недавно предполагалось, что природные условия на Венере похожи на земные и что эта планета может быть населена организмами. Однако полученные в последние десятилетия фактические данные полностью опровергли это заключение. Природные условия на Венере оказались резко отличающимися от земных.

  2. Большая масса обеспечила планете активную внутреннюю жизнь в течение всей ее истории, включая и современную эпоху. Это выражается в образовании крупных мно- гочисленных морфоструктур: отраженных в рельефе текто- нических форм, а также элементов вулканического релье- фа – нагорий, конусов, лавовых потоков и т. д.

  3. Большая масса планеты способствовала при расплав- лении вещества и следующей за ней фазы вулканической активности удержанию выделившихся из недр огромных масс газов и паров воды, необходимых для построения атмосферы и гидросферы. Сформировавшаяся атмосфера оказалась необычайно плотной (в 90 раз плотнее земной) и на 97% состоящей из углекислого газа. Гидросфера же (в широком понимании этого слова) отсутствует на Венере. В атмосфере содержится менее 0,1% водяного пара, а вода в жидкой и твердой фазах находится лишь в верхней части основного облачного слоя, на высоте примерно 60 км. Но и там ее очень мало, она не оказывает никакого влияния на поверхностные процессы и природную среду в целом.

  4. Атмосфера обладает колоссальным парниковым эффектом, результатом чего является необычайно высокая температура поверхности планеты и нижних слоев тропо- сферы (470 С).

  5. Отсутствие на Венере климатического круговорота воды крайне тормозит развитие комплекса экзогенных процессов и формирование природных условий в целом, особенно необходимой среды для зарождения и развития жизни.

  6. Поверхность Венеры консервативна, что следует из широкого распространения на ней ударных кратеров, их хорошей сохранности и слабой обработанности экзоген- ными процессами. В этом отношении поверхность Венеры аналогична лунной и меркурианской. Она соответствует им и по уровню эволюции, хотя отстает от марсианской, не говоря уже о земной.

  7. Причина огромного скопления в атмосфере углекислого газа объясняется отсутствием на планете водных бассейнов, которые могли бы поглотить этот газ.

  8. Вопрос о том, почему на Венере нет жидкой воды, пока остается открытым. Высказываются предположения, что под влиянием высокой температуры произошло разложение воды на кислород и водород. Водород как легкий газ образовал верхнюю атмосферу, а кислород был использован на окисление пород.

Подобные документы:

Реферат Исследования Венеры космическими аппаратами Нашу Землю со всех сторон окружает необъятный мир небесных тел - Вселенная или космос. Лишь некоторые из небесных тел, как например, Солнце, Луна, 5 планет и наиболее яркие звезды, можно наблюдать невооруженным глазом. Астрономия - наука, изучающая тела Вселенной, - зародилась в глубокой древности.

Реферат Планета Марс Марс – от греческого Mas – мужская сила – бог войны, в римском пантеоне почитался как отец римского народа, охранитель полей и стад, позднее – покровитель конных состязаний. Марс – четвертая планета Солнечной системы. Сияющий кроваво-красный диск, увиденный в телескоп, наверняка ужаснул астронома, открывшего эту планету. Поэтому ее так и назвали.

Реферат Строение солнечной системы Солнечная система представляет собой группу небесных тел, весьма различных по своим размерам и физическому строению. В эту группу входят: Солнце, Девять больших планет, вместе с 61 спутником, более 100000 планет (астероидов) , порядка десяти комет, а также бесчисленное множество метеорных тел движущихся как роями так и в виде отдельных частиц.

Реферат Венера p { margin-bottom: 0.25cm; direction: ltr; color: #000000; line-height: 120%; orphans: 2; widows: 2 } p.western { font-family: "Times New Roman Cyr", serif; font-size: 10pt; so-language: ru-RU } p.cjk { font-family: "Times New Roman Cyr", serif; font-size: 10pt } p.ctl { font-family: "Times New Roman Cyr", serif; font-size: 10pt }

Реферат Исследование Марса Ни одна из планет Солнечной системы не притягивает столько внимания и не остается столь загадочной. «Тихая» по своим данным планета более «агрессивна» к вторжению извне, чем Венера – планета с самыми жесткими условиями (среди планет данной группы).Многие называют Марс «колыбелью великой древней цивилизации», другие – просто еще одной «мертвой» планетой Солнечной системы.

Доклад: Загадки Венеры Венера – наша ближайшая соседка. Её размеры, масса и плотность пород близки к земным. Вместе с тем её магнитное поле в три раза слабее, чем на Земле. Венера очень медленно вращается вокруг своей оси в направлении, обратном вращению Земли. Давление на её поверхности достигает 10 млн. Па, а температура около +5000 С. На высоте 49 км над планетой простирается мощный слой облаков.

Реферат Освоение космоса

Курсовая: Исследование атмосферы планеты Венера Московский ОРДЕНА ЛЕНИНА И ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ Авиационный Институт имени СЕРГО ОРДЖОНИКИДЗЕ Планета Венера Рассмотрим космический объект, который должен быть изучен в ходе исследований, проведенных ниже описанной системой. Надо заметить, что так

nreferat.ru

Реферат - Планета Венера - Математика

Венера — ближайшаясоседка Земли, вторая по порядку планета Солнечной системы, ее среднеерасстояние до Солнца 108,2 миллиона километров. Размеры и массы Венеры и Землитакже очень близки: радиус Венеры 6051 км (6378 км у Зем­ли), масса Венерысоставляет 0,815 массы Земли, средняя плотность 5240 кг/м, ускорениесвободного падения на эква­торе 8,76 м/с, что составляет 0,89 земного. ПослеСолнца и Луны Венера является самым ярким светилом на земном небе: ее звезднаявеличина в максимуме достигает 4,45m, и при бла­гоприятных условиях можно даженаблюдать тень от предметов, создаваемую светом Венеры. Она совершает одиноборот по ор­бите вокруг Солнца за 225 земных суток. Собственное вращениеВенеры необычно: длительность одного оборота превышает ве­нерианский год иравна 243 земным суткам, направление враще­ния противоположно вращению другихпланет. При этом солнеч­ные сутки длятся около 117 дней. Средняя скоростьдвижения Венеры по орбите 34,99 км/с. Угол между плоскостями экватора и орбитыравен 25о06, орбита планеты круговая,   и поэтому на

Венере непроисходит смены времен года.

В 1610 году Галилейвпервые наблюдал смену фаз у Вене­ры, т.е. изменение ее видимой формы от диска доузкого сер­па. В 1761 году Ломоносов, наблюдая прохождение планеты по дискуСолнца, обнаружил у Венеры атмосферу. Начиная с XVII века астрономы       нераз пытались «разглядеть» Венеру, однако

из-за плотного облачного покроваВенера в видимом  диапазоне

длин волнпредставляется однородной.

Совершенствованиетехники           астрономических наблюдений, использование поляриметрических истереоскопических измере-

ний, освоение инфракрасного и ультрафиолетового  диапазонов

длин волн позволили получитьнекоторую информацию о характе­ристиках атмосферы Венеры на уровне верхнейграницы облаков.

В двадцатых — тридцатых годах нашего столетия были про­ведены первые наблюдения Венеры винфракрасной области         8-13 микрон, позволившие определить температуруатмосферы у верх­ней границы облаков (Петтит и Никольсон,  1929 год), обнару­женыполосы  углекислого  газа            (Адамс и Данхэм,  1932 год), проведеныпервые  поляриметрические  измерения          (Лио,   1929 год). Дальнейшееразвитие наземных спектроскопических наблю­дений позволило Конну и др.  в 1969году получить прекрасный атлас инфракрасных спектров Венеры и других планет соспект­ральным разрешением порядка 1055, обнаружить линии окиси уг­лерода,соляной и фтористо-водородной кислот в спектре Вене­ры и оценить содержаниеэтих компонент. Рядом исследователей в шестидесятые годы были обнаружены ватмосфере планеты пары воды.

До полетов космическихстанций к Венере единственную возможность зондирования подоблачной атмосферыпланеты  пре-

доставлялирадиоастрономические наблюдения в сантиметровом и

дециметровом диапазонах длин волн. Этинаблюдения, выполнен­ные в конце пятидесятых — начале шестидесятых годов в СССРи США, а также совместные наблюдения ученых обеих стран пока­зали, что нижняяатмосфера Венеры имеет температуру 500 — 700 К или 250-450оС. Тогда же в1961-1962 годах в СССР, США

иВеликобритании была проведена радиолокация Венеры, которая позволилаопределить  направление  и  скорость         собственного вращения, изучить топографические характеристики поверхнос­ти, уточнить размер Венеры.

Хотя наземныеастрономические наблюдения Венеры продол­жают развиваться и поныне, основнаяинформация об этой пла­нете за последние два десятилетия была получена скосмичес­ких аппаратов.

Первым исследовательским аппаратом, направленным земля­нами к другойпланете,            стала советская автоматическая стан­ция«Венера-1», стартовавшая 12 февраля 1961 года. Через три месяца онапрошла на расстоянии около 100  тысяч  километров от Венеры и вышла на орбитуспутника Солнца. Основными зада­чами станции «Венера-1»  являлись проверка  методов  вывода космических объектов на межпланетную трассу, проверкасверх­дальней радиосвязи и управления станцией,  проведение  физи­ческихисследований в космосе.

В декабре 1962 года американский зонд «Маринер-2»      про­летелна  расстоянии 35 тысяч километров от Венеры,  имея на борту радиометрсантиметрового диапазона,  магнитометр и ряд приборов для  исследования заряженных      частиц в космической пыли. Магнитное поле не было обнаружено;по данным радиомет­ра был сделан вывод, что радиоизлучение формируется в нижнейатмосфере Венеры,  а не в  ионосфере,  как  это  допускалось ранее.

В 1965 году к«прекраснейшей из звезд небесных», так назвал Венеру Гомер, ушла«Венера-2», которая провела так называемые полетные исследования.Надежно работали приборы

дляизмерения  космических лучей,  магнитных полей,  потоков

заряженныхчастиц и микрометеоритов,  радиопередатчики и вся

система передачи результатов научныхнаблюдений. Расправлен­ные крылья солнечных батарей питали приборы и аппаратуруэлектроэнергией.

Основная техническаяпроблема, стоявшая перед конструк­торами межпланетной станции, заключалась вобеспечении ее работы во время спуска в атмосфере Венеры в условиях огром­ныхтемператур и давления, а также в период аэродинамическо­го торможения.

И вот наступил качественно новый этап: в 1965 году «Ве­нера-3»впервые достигла поверхности планеты,  а  1967       году «Венера-4»впервые  осуществила плавный спуск в ее атмосфере и провела непосредственные физико-химические  исследования. Первый в  истории человечества сеансмежпланетной радиосвязи продолжался 93 минуты. Были измерены в зависимости отвысоты плотность, давление и температура атмосферы,  проведен хими­ческийанализ состава  атмосферы.  Спускаемый  аппрарат  был расчитан на давление до20 атмосфер, и передача данных прек­ратилась до посадки на твердую поверхностьВенеры.  Было ус­тановлено, что      углекислый газ является основнойкомпонентой атмосферы (не менее 95%),  получены пределы содержания      рядадругих компонент, однозначно установлено существование высо­ких давлений итемператур в атмосфере планеты. На пролетном аппарате измерена водороднаякорона Венеры, проведены наблю­дения заряженных частиц и микрометеоритов.

Через день послепосадки «Венеры-4» мимо планеты       мимо планеты на расстоянии          4000км пролетел «Маринер-5», с по-

мощью которого было исследованопрохождение радиосигнала че­рез атмосферу и ионосферу (радиопросвечивание) ипроведены измерения водородной короны. По данным радиопросвечивания былиполучены зависимости температуры и давления от высоты в пределах 90-35 км иконцентрация электронов ионосфере.

Существование менееплотной, чем земная, водородной ко­роны у Венеры было обнаружено измерениями накосмических ап­паратах «Венера-4» и «Маринер-5». Дляверхних областей Вене­ры характерен ряд особенностей, определяемых фотохимиейCO2 c возможным участием в комплексе реакций воды и галогенов, в условияхатомных и молекулярных взаимодействий и взаимодейс­твия с солнечным ветром.

Основная цель запуска в1969 году двух станций «Вене­ра-5» и «Венера-6» — увеличение проникновения         в атмосферу

Венеры, повышение точности измерений химическогосостава, параметров атмосферы и соответствующих им высот. Корпус

спускаемого аппарата был несколькоупрочен, что позволило провести измерения подоблачной атмосферы на более низкихвы­сотах (до 19 км над поверхностью планеты).

Спускаемый аппаратновой конструкции был создан и вошел в состав станции «Венера-7»,которая достигла окрестностей планеты в декабре 1970 года. Ее аппаратурапроводила измере­ния не только во время спуска во всей толще атмосферы,   но и

в течение 23минут на  самой  поверхности  планеты.  Условия

оказалисьнеобыкновенно суровыми: давление достигало 90 ат­мосфер, а температура — до500оС; в облачном покрове, окуты­вающем планету, очень много углекислого газа имало кислоро­да. Получены данные о характере  пород       поверхностного        слоя

Венеры.

С помощью спускаемогоаппарата станции «Венера-8» в 1972 году были проведены разносторонниеисследования атмос­феры и поверхности Венеры. Кроме измерений атмосферного дав­ления,плотности и температуры были измерены освещенность и вертикальная структурааэрозольной среды, в том числе и об­лачного слоя, определены скорости ветра наразличных высотах в атмосфере по доплеровскому сдвигу частоты радиопередатчи­ка,проведена гамма-спектроскопия поверхностных пород. Фото­метрические измеренияпоказали, что облачный слой простира­ется до высот около 40 км, оценена егооптическая толщина и прозрачность; освещенность на поверхности дневной стороныВенеры оказалась достаточной для съемки изображения места посадки. Впервыеполучен высотный профиль скорости ветра, который характеризуется возрастаниемскорости от 0,5 м/сек у поверхности до 100 м/сек у верхней границы облаков. Посо­держанию естественных радиоактивных элементов (уран, торий, калий)поверхностные породы на Венере занимают промежуточное положение междубазальтами и гранитами.

В феврале 1974 года нарасстоянии 6000 км от Венеры прошел американский зонд «Маринер-10»,на котором были уста-

новлены телевизионная камера,ультрафиолетовый спектрометр и

инфракрасный радиометр.Полученные телевизионные изображения

облачного слоя использовались дляисследования динамики ат­мосферы. С помощью ультрафиолетового спектрометраобнаружены и измерены количества гелия в атмосфере.

Станции новогопоколения «Венера-9» и «Венера-10», дос­тигшие планеты воктябре 1975 года, стали первыми искусс-

твенными спутниками Венеры, а ихспускаемые аппараты совер­шили мягкую посадку на освещенной стороне планеты.Впервые были переданы панорамные телевизионные изображения с другой планеты,измерены на спускаемых аппаратах плотность, давле­ние, температура атмосферы,количество водяного пара, прове­дены нефелометрические измерения частицоблаков, измерения освещенности в различных участках спектра. Для измерений ха­рактеристикгрунта помимо гамма-спектрометра использовался радиационный плотнометр.Искусственные спутники позволили получить телевизионные изображения облачногослоя, распреде­ление температуры по верхней границе облаков, спектры ночно­госвечения планеты, провести исследования водородной коро­ны, многократноерадиопросвечивание атмосферы и ионосферы, измерение магнитных полей иоколопланетной плазмы. На стан­циях второго поколения информация со спускаемыхаппаратов предавалась на орбитальный аппарат, а затем ретранслирова­лась наЗемлю.            Это привело к значительному увеличению коли-

честваполучаемой информации.

На панорамах виднывыходы коренных пород наряду с эро­дированным материалом; развалы камней могутбыть результатом смещений в коре и служить подтверждением тектонической ак­тивностина Венере. В целом поверхность Венеры — это горячая сухая каменистая пустыня.

В 1978 году помежпланетной трассе прошли и достигли заданной цели еще два посланца — «Венера-11» и            «Венера-12»,

основной задачей которых, было детальноеисследование хими­ческого состава нижней атмосферы методами масс-спектромет­рии,газовой хроматографии,            оптической и рентгеновской

спектроскопии. Были измерены количества азота, окисиуглеро­да, двуокиси серы, водяного пара, серы, аргона, неона и оп­ределеныизотопные отношения аргона, неона, кислорода, угле­рода, обнаружены хлор            исера в частицах облаков, получены

детальные данные по поглощению солнечногоизлучения на    раз­личных высотах   в атмосфере, необходимые для изучения еготеплового режима. Специальным приемником были зарегистриро-

ваны импульсы электромагнитного излучения,указывающие на существование электрических зарядов в атмосфере наподобе земныхмолний.        На пролетных аппаратах были установлены уль-

трафиолетовые спектрометры дляисследования состава верхней атмосферы.

Основная составляющая атмосферы Венеры — углекислый газ (96% по объему ),азот ( 4%), окись углеродадвуокись серы, кислорода практически нет,содержание водяного пара, по-ви­димому, колеблетсяот 0,1 — 0,4% под облачнымислоями до 15-30% выше них. Наземными спектроскопическими исследования­минайдены также  молекулы HCl.

Температура атмосферыВенеры у поверхности планеты ( на уровне, соответствующем радиусу 6052 км) 735К, давление 9 МПа, плотность газа в 60 раз больше, чем в земной атмосфере.Атмосфера Венеры до 50 км от поверхности сохраняется близкой к адиабатической,а выше 50 км температурный градиент умень­шается приблизительно вдвое. Суточныеколебания температуры у поверхности 1 К, а на высоте 50-80 км достигают 15-20К. Температура верхней границы облачного слоя в приполярной зо­не на 5-10 Квыше, чем у экватора, что, видимо, связано с

изменениемвысоты расположения облаков.  Высокая температура

атмосферы у  поверхности  объясняется действием парникового

эффекта : согласно данным  прямых  измерений,            значительная

часть солнечного излучения (3 — 4%) достигает поверхности и

нагреваетее, а сильная непрозрачность для собственного инф­ракрасного излучения плотнойуглекислой атмосферы с примесью водяного пара препятствует остываниюповерхности.

Обнаружена высокаягрозовая активность Венеры: интен­сивность электрических разрядов,регистрировавшаяся по час­тоте следования низкочастотных импульсов наспускаемых аппа­ратах «Венера-11» и «Венера-12», оказаласьво много раз вы­ше, чем на Земле. Очевидно вблизи поверхности Венеры возни­каютэлектрические поля с напряженностью в сотни кВ/м. Высо­кая грозовая активностьпредположительно объясняется наличи­ем действующих вулканов на поверхностиВенеры.

Космическиеисследования показали, что  собственного магнитного поля у Венеры нет.

Одновременно с«Венерой-11» и «Венерой-12» проходила работа американскогопроекта «Пионер-Венера», который вклю­чал спутник и четыреатмосферных зонда с аппаратурой для из­мерения давления, плотности,температуры, оптической толщины облаков и теплового излучения в атмосфере. Наодном из зон­дов были дополнительно установлены масс-спектрометр, газовыйхроматограф, спектрометр размеров аэрозольных частиц и два фотометра. На бортуспутника      находились масс-спектрометры

нейтрального и ионного      состава,ультрафиолетовый спектро­метр, инфракрасный радиометр, поляриметр, магнитометр,ана-

лизаторы плазмы и электрическихполей, радар для исследова-

ния рельефа. 4 декабря 1978 года на околопланетнуюорбиту выведен американский космический аппарат «Пионер-Венера-1», а9 декабря на Венере в четырех точках планеты совершили по­садку один большой итри малых зонда (большой и один малый на дневную сторону, 2 других малых — наночную поверхность), доставленные космическим аппаратом«Пионер-Венера-2»       (сам

космический аппарат сгорел в атмосфереВенеры). Во время этих экспериментов были проведены исследования структуры,химического состава, оптических свойств и теплового режима атмосферы, свойствоблаков. Проведены также измерения нейт­рального и ионного состава верхнейатмосферы;            плазменные и

магнитные измерения; методомрадиовысотометрии исследован рельеф значительной части планеты.

На спускаемых аппаратах «Венера-13» и «Венера-14»(1982 год) была  установлена            усовершенствованная аппаратура хими­ческогоанализа атмосферы (масс-спектрометры, газовые фрома­тографы, оптические ирентгеновские спектрометры),  для исс­ледования частиц облачного слоя.  Наэтих  станциях  впервые были получены цветные панорамы поверхности планеты, провед­ены бурение и анализ грунта. Была решена проблема создания и обработкигрунтозаборного устройства,  взятые образцы грунта доставлены внутрь спускаемыхаппаратов и подвергнуты рентге­новскому анализу,  который дал содержаниеосновных элементов в исследованных образцах грунта.

Главной цельюкосмического эксперимента на искусствен­ных спутниках Венеры автоматическихмежпланетных станциях «Венера-15» и «Венера-16» (1983 год)являлось радиолокацион­ное картографирование поверхности северного полушария спо-

мощью радиолокаторов бокового обзора.Впервые получены ради­олокационные изображения северной приполярной областиВене­ры. На изображениях различаются кратеры, гряды, возвышеннос­ти, крупныеразломы, горные хребты и детали рельефа размером 1-2 км. На спутниках былитакже установлены приборы для зон­дирования поверхности и атмосферы планеты врадиодиапазоне и инфракрасный Фурье-спектрометр, созданный учеными ГДР и СССРдля исследования химического состава,     строения, теплового

режима идинамики атмосферы на высотах 55-100 км.

Получение с помощьюразведчиков космоса разнообразной информации о районах дальних и ближних,Венере, других угол­ках Солнечной системы имеет огромное научное и    познаватель-

ноезначение. Познав прошлое люди смогут предсказать будущее.

Литература.

«В Е ГА»         Международный проект «Венера-Галлей»

Центр Управления Полетом, 1985 год

«Кзвездам — To the stars»

Шаталов В.А.

Ребров М.Ф.

Баскевич Э.А.

«Планета», Москва, 1982 год

«Космонавтика» Энциклопедия

«Советскаяэнциклопедия», Москва, 1985 год

www.ronl.ru

Реферат: Планета Венера

Венера

Венера – в римской мифологии первоначально богиня весны и садов, впоследствии отождествлялась с греческой богиней Афродитой и почиталась как богиня любви и красоты.

Венера – планета, находящаяся на расстоянии от Солнца 0,7 а.е. (1 астрономическая единица = 149,6 млн. км, что является средним расстоянием Земли от солнца), радиусом в среднем 6050 км и массой 4,9х1024 кг.

Топографическое описание поверхности планеты

Подобно Земле, на Венере имеются горы, равнины, низменности. Обширные горные области, по аналогии с Землёй, мы будем называть континентами. Зелёная, жёлтая и красная окраски соответствуют таким горным районам, к которым относятся три области.

Наибольшая из них – Земля Афродиты, расположенная в экваториальной части планеты. Её площадь по уровню 6052,2 км составляет 41 млн. км2. По площади она близка к Африке. В отличие от Земли, остальные континенты Венеры значительно меньше. В сумме континенты на Венере занимают лишь 5-7% территории, в зависимости от того, по какому превышению над средним уровнем считать.

Земля Иштар, площадью около 8,5 млн. кв. км является вторым большим континентом. Ориентировочно её площадь близка к Австралии. В её западной части находится вулканическое плато Лакшми, а в центральной части – высочайшие на Венере горы Максвелла, достигающие уровня 11 км. В широтном направлении Земля Иштар тянется на 2500 км.

В основном, поверхность Венеры образуют равнины с невысокими холмами, которые называют «волнистыми» равнинами. 56% всей поверхности приходится на интервал высот от –0,5 до +0,5 км. Менее распространены сравнительно неглубокие низины, на карте показанные густым синим тоном; они охватывают около 25% территории. Низменность Равнина Аталанты, площадью около 7 млн. кв. км., представляет более глубокую депрессию, до 1,6-2 км ниже среднего уровня. Равнина Аталанты напоминает лунные моря.

Отсутствие на планете «уровня моря» приводит к необходимости вести отсчет от какого-то условного уровня. Согласно Мак-Гиллу и др. (1983) можно выбрать средний радиус поверхности (объем горных пород над этим уровнем равен объему атмосферы во впадинах под ним), медианный радиус, который делит поверхность пополам по площади, и модульный радиус, на который приходится наибольшая площадь, согласно гипсометрической кривой.

Краткий обзор поверхности планеты

Область Альфа представляет собой невысокое плато с поперечником около 1300 км, высотой по краям около 2,5 км над окружающей местностью (с юга это Равнина Лавинии). В центре плато имеется более или менее правильной формы депрессия, пониженная на 1 – 2 км относительно несплошного вала. Плато имеет крутые склоны (среднеквадратичные уклоны 5 – 10о) и сильно раздробленную поверхность, перерезанную множеством субпараллельных линеаментов (линейных зон тектонических нарушений), вытянутых с юго-запада на северо-восток. Есть мнение, что Альфа может быть останцем древней коры Венеры или древним вулканическим сооружением со следами тектонических разрушений, а круговые образования на плато моут быть метеоритными кратерами, образовавшимися позже.

Далее к востоку между юго-восточной оконечностью Земли Иштар и Землей Афродиты находятся Области Белл и Теллуры, разделенные Равниной Леды. Белл и Теллура представляют собой объекты примерно такой же высоты (около 1 – 1,5 км) с основанием около 500 и 1500 км соответственно. Дале к востоку находится обширная равнина Ниобы, примыкающая к Земле Афродиты с севера и равнина Айно, окружающая ее с юга. На севре, на широте Земли Иштар, Равнину Ниобы замыкает невысокая область Тефии (95 – 140о в.д.) и низменность Равнина Аталанты. Далее к востоку на широте 68 – 73о с.ш. расположена Область Метиды, протяженностью около 500 км. К юго-востоку от нее находятся Равнины Седны и Гиневры.

Равнина Гиневры имеет несколько возвышенностей в пределах 0,3 – 1 км. Резкое повышение уровня – это Область Астерии (западная часть Беты).

На долготе 205 – 220о, к югу от Афродиты и Ульфрун находится Область Имдр, так же представляющая возвышенность 0,5 – 1 км.

Сложная по рельефу Область Астерии (255 – 277о в.д.) примыкает с запада к Области Бета. Вытянутые вдоль меридиана Область Бета – Область Фебы и Область Фемиды на юго-востоке Равниной Навки отделены от Области Альфа. С юга Область Имдр и Область Фемиды примыкают к Равнине Елены, на востоке смыкающейся с Равниной Лавинии. На этой равнине, на широте 55о ю.ш. и долготе 322о находится кратер Лизе Майтнер, диаметром 300 км, с валом выозвышающимся на 0,5 км и депрессией в центре глубиной 1 км.

Наряду с Лизе Майтнер, найдено большое число других образований, природа которых так же связывается с метеоритной бомбардировкой. Ввиду высокой плотности атмосферы планеты, образование ударных кратеров кажется проблематичным. При изучении данного вопроса было доказано, что крупные метеоритные тела, способные образовать кратеры диаметром 10 км и более тормозятся атмосферой Венеры незначительно. Существенно влияние атмосферы, выражающееся в замедлении и разрушении метеоритных тел диаметром не более 40 м.

Другая сторона влияния атмосферы заключается в том, что она препятствует выбросу продуктов разрушения поверхности на большие расстояния.

Среднее число метеоритных кратеров на единицу площади используется для определения возраста поверхности, если известно, как менялась плотность метеоритной бомбардировки с течением времени. Этот метод широко используется для определения возраста безатмосферных тел, таких как Луна, Меркурий и с поправкой на разреженную атмосферу – для Марса. Для Венеры с ее плотной атмосферой, определение ее возраста дало интересные результаты.

Земля Иштар и прилегающие районы

Земля Иштар – своеобразный геоморфологический заповедник на Венере. Если область Бета можно охарактеризовать, как район вулканического рифтогенеза[1] (Кэмпбелл и др., 1984), Землю Афродиты – как континент геологически большого возраста с заметными разрушениями, то Земля Иштар представляет вестма сложный в геоморфологическом отношении комплекс, объединяющий совершенно несходные элементы рельефа.

Очень условно ее можно разделить на следующие части: обширное высокогорное Плато Лакшми, Горы Максвелла, прилегающие к нему с востока, и расположенный на восточной оконечности континента район особого рельефа.

Плато Лакшми расположено на высоте 3 – 4 км. Исследователи сравнивают Плато Лакшми с земным Тибетом, однако последний вдвое меньше.

С востока, где плато несколько понижается, это комплекс Гор Максвелла, с севера – Горы Фрейи, с запада – Горы Акны. С южной стороны проходит довольно пологий Уступ Весты, переходящий в еще один уступ – Уступ Ут.

Эксперементы с радиолокатором бокового обзора на искусственных спутниках планеты – «Венера-15», «Венера-16» и снимки, полученные в эксперименте, стали огромным шагом вперед, позволившим перейти от полудогадок о природе поверхности к анализу фактов методами современной геоморфологии.

Изучение материалов, касающихся Плато Лакшми, окружающих гор, да и всей Земли Иштар в целом, указывает на мощные процессы локальной тектоники, приведшие к ее образованию.

Еще некоторые типы рельефа в окрестностях Земли Иштар, которые свидетельствуют о тектонической активности планеты. Исследователи назвали их овоидами. Это образования, которые не имеют прямых аналогов на Земле и других планетах.

Овоиды находящиеся в районе Мнемосины, между западной оконечностью Земли Иштар и Областью Метиды, это образования более или менее правильной формы, диаметром до 400 км и сложной структурой концентрических и дугообразных гряд, разделенных несколькими километрами. Происхождение их, как предполагают ученые (Барсуков и др.), имеет тектоно-магматическую природу: при остывании образовавшегося куполообразного поднятия происходило сползание и смятие пород, в результате чего образовался данный рельеф. Имеются и другие объяснения, но влюбом случае овоиды – проявление тектонической активности планеты, возможно в достаточно далеком прошлом.

Подобные образования свойственны Области Теллуры шириной около 400 км, представляющую собой возвышенность, окруженну вулканическими равнинами. Весьма похожий, но более хаотичный рельеф имеет восточная часть Земли Иштар, к которой с севера и с юга примыкают типичные вулканические равнины.

При анализе полученных материалов учеными был обнаружен новый вид рельефа, который широко распространен на Венере. Барсуков и др. предложили для него название «паркет» (имея в виду рисунок но не гладкость). Он так же не имеет прямых аналогов на Земле и состоит из частых чередующихся невысоких гряд возвышенностей и долин. В ряде случаев в их расположении видна определенная закономерность, а расположение соседних полос гряд имеет ортогональный рисунок.

Таким образом на поверхности Венеры преобладают вулканические и вулкано-тектонические равнины, есть лавовые плато, а ряд образований может иметь вулканическую природу.

Высочайшим тектоническим сооружением на планете является горный массив Максвелл, находящийся в центральной части Земли Иштар. Сведения о нем получены из двух источников: радиолокации спутников планеты «Венеры-15 и –16» и наземной радиолокации.

Для определения возраста Плато Лакшми, Гор Максвелла и Земли Иштар в целом и вулканических равнин окружающего района использовался уже упоминавшийся метод регистрации плотности метеоритных кратеров на единицу поверхности. Исходя из модельных расчетов и опираясь на сведения о плотности и возрасте кратеров на Меркурии, Луне, Марсе, ученые (Барсуков и др.) пришли к выводу, что вероятный возраст Плато Лакшми и Земли Иштар в целом 0,5 – 1 млрд. лет и что древняя кратерированная поверхность, относящаяся к периоду максимума метеоритной бомбардировки ( 3,9 млрд. лет ), на Венере не сохранилась, как и на Земле. В отличии от Земли, на Венере сохраняются кратеры возрастом до 1 млрд. лет, в то время как на Земле они разрушаются за несколько миллионов лет.

Типичный метеоритный кратер на поверхности Венеры

Несмотря на огромные технические трудности, связанные с высокими температурой и давлением, первые прямые телевизионные снимки поверхности планеты появились задолго до радиолокационных бортовых экспериментов.

Выветривание горных пород

На Земле выветривание происходит под действием смены температур, потоков воды, осадков (особенно фазовых переходов воды), эрозии переносимой пылью и в результате активности биосферы. Небольшую роль могут играть также сейсмические явления. Наконец, существует химическое выветривание.

На Венере атмосфера поддерживает постоянную температуру поверхности, зависящую только от гипсометрического уровня по­следней. Суточные колебания температуры не превышают единиц кельвинов, широтной зависимости температур для поверхности почти нет. Нагрев поверхности днем незначительной частью солнечной радиации, достигающей поверхности, не вызывает заметных изменений температуры благодаря эффективному теплообмену с атмосферой. Таким образом, выветривание из-за изменений температур горных пород и образования в них механических напряжений исключается. Вода в жидкой фазе, какие-либо другие осадки и сколько-нибудь значительная влажность также исключаются. Согласно существующим представлениям существование биосферы на Венере невозможно.

Местные разрушения горных пород на планете могут происходить в результате теплового эффекта вулканических извержений и воздействия потоков лавы, если активный вулканизм существует на Венере в нынешнюю эпоху. Однако подобные процессы имеют локальный характер и ограничены во времени. Механические разрушения происходят также в результате тектонических процессов (в том числе сейсмических явлений), с признаками которых мы встречались при описании поверхности планеты (складчатые горы в обрамлении Плато Лакшми, разрушенные скальные породы).

В этих условиях медленным, но постоянно действующим фактором является химическое выветривание в результате термохимических реакций между поверхностью и атмосферой.

Главными агентами атмосферы, вызывающими химическое выветривание, являются серосодержащие газы. Их взаимодействие с поверхностью приводит к связыванию серы в продуктах выветривания, что обогащает верхний слой грунта серой почти на два порядка по сравнению с Землей.

Общие представления об атмосфере Венеры

Тепловое радиоизлучение

Венера обладает наиболее массивной атмосферой из всех планет земной группы. Если отношение массы атмосферы к массе планеты для Земли составляет 0,86 х10-6, то для Венеры оно в 110 раз больше:

0,96 х10-4.

Основные составляющие атмосферы — углекислый газ (96,5%) и азот (около 3,5%). Все остальные газы, присутствующие в атмосфере, вместе взятые, не превосходят 0,1 %. Поэтому в первом приближении атмосферу Венеры можно рассматривать как сухой углекислый газ.

Тропосфера Венеры (нижний «этаж» атмосферы, где температура почти линейно падает с высотой) имеет высокую плотность и обладает значительной протяженностью. Так, ниже уровня, соответствующего «нормальным» земным условиям по давлению и температуре, находится своеобразный газовый океан 50-километровой глубины, состоящий из сильно сжатого и нагретого до высокой температуры газа. Даже если бы атмосфера Венеры была свободна от аэрозолей, попытка увидеть поверхность планеты сквозь столь значительную толщу газа была бы безрезультатной. Благодаря сильному рассеянию (и частичному поглощению) света атмосферой, последняя практически непрозрачна для внешнего наблюдателя во всем диапазоне частот, кроме радиоволн. Значительно прозрачнее атмосфера в диапазоне сантиметровых и дециметровых радиоволн, где и удалось впервые зарегистрировать излучение нагретой поверхности планеты.

Сказанное не означает, однако, что солнечный свет не проникает глубоко в атмосферу; в рассеянном виде он достигает поверхности планеты.

Схема строения атмосферы Венеры выглядит следующим образом. В интервале высот 47—70 км над поверхностью расположен протяженный слой тумана средней плотности, который по традиции называют облаками Венеры. От земных они отличаются не только низкой плотностью, малым массовым содержанием и микроскопическими размерами частиц, но ивесьма экзотическим составом: это мельчайшие капли высококонцентрированной серной кислоты. Облаков водного состава на Венере не бывает, а относитеьное содержание водяного пара в атмосфере очень мало, в 50 – 70 раз меньше, чем в земной атмосфере.

Верхняя граница облаков у 65—70 км имеет размытый характер и постепенно переходит в надоблачную дымку, поднимающуюся еще на 15—20 км. Дымка имеет непостоянную плотность, которая подвержена сильным изменениям с характерным временем около года или менее. Нижняя граница облаков у 47 км выражена весьма четко; но и ниже уровня 47 км имеется слабая дымка, простирающаяся вниз также километров на 15. Ниже 30 км атмосфера Венеры практически свободна от аэрозолей.

Как показывают измерения, температура у поверхности на уровне радиуса 6051,6 км составляет 735 К, давление 92 бар. С высотой температура и давление быстро падают. На уровне при­мерно 53 км условия близки к земным «нормальным»: от уровня с Т=293 К, где р~0,5 бар, до Т=340 К, где р =1 бар.

Высокие температуры у поверхности определяются одной из главных особенностей атмосферы планеты: сильным парниковым эффектом. Солнечная радиация проникает глубоко в атмосферу и поглощается поверхностью и атмосферой. Однако для длинноволнового теплового излучения атмосфера малопрозрачна, что и создает высокие температуры у поверхности.

Факт высокой температуры поверхности был установлен еще до начала зондирования атмосферы Венеры космическими аппаратами, по радиофизическим исследованиям планеты (Майер, 1963). Как любое нагретое тело, поверхность излучает значительную мощность в радиодиапазоне. Поэтому измерение яркостной температуры радиоизлучения можно связать с термодинамической температурой поверхности. К первым серьезным исследованиям этого рода относятся работы Майера и др. (1957, 1958).

Особенно большое число радиоастрономических измерений было проведено с 1962 по 1970 г. Далее начались прямые измерения на поверхности и проблема утратила актуальность. Наиболее высокие температуры наблюдаются в диапазоне 3—15 см, до 660 К.

Химический состав атмосферы

Подробные сведения об истории исследований состава атмосферы планеты можно найти в монографии «Венера» (Цан и др., 1983), а также в более ранних работах и изданиях: Л. Янг (1974), Кузьмин и Маров (1974), Мороз (1981) и других. В изучении состава атмосферы большую роль сыграли как космические, так и традиционные наземные, прежде всего — спектрометрические исследования (Конн и др. 1967).

Основная составляющая атмосферы планеты — углекислый газ. Спектрометрически он был отождествлен в атмосфере Венеры еще в 1932 г., в работе Адамса и Данхэма (1932). Однако до полета «Венеры-4» в 1967 г. оценки его содержания значительно колебались. Измерения «Венеры-4» и последующие более точные измерения «Венеры-5 и -6» практически закрыли вопрос об основных составляющих.

Углекислый газ. Атмосфера Венеры почти полностью состоит из углекислого газа, который выделился из коры планеты в процессе ее дегазации. На первый взгляд, на Венере запасы углекислого газа намного больше, чем на Земле. Различие снижается на 2 порядка, если учесть примерно в 60 раз большее количество углекислого га­за, растворенного в океанах Земли. Растворенный газ находится в динамическом равновесии с СО2 в атмосфере и демпфирует изменения его содержания. Постоянная времени обмена для океана близка к 7 годам. Однако подлинным резервуаром углекислого газа являются карбонаты в осадочных породах Земли.

Азот. Причина повышенного содержания азота в атмосфере, как предполагается, так же лежит в высокой температуре поверхности, из-за чего весь азот Венеры перешел в атмосферу.

Средняя и верхняя атмосфера

На Венере тропопауза — переход от тропосферы к стратосфере — совпадает с верхней границей облаков. Тропопауза в земной атмосфере характеризуется переходом к очень малому вертикальному градиенту температуры. Стратосфера Земли отличается быстрым ростом температуры с высотой в интервале 35—55 км, что объясняется присутствием озона, поглощающего коротковолновую часть солнечной радиации. «Озоновый» максимум температур приходится на интервал 40—55 км, что придает земному профилю характерный вид.

В атмосфере Венеры озон практически отсутствует, и выделение области стратосферы достаточно условно. Главная ее особенность — преобладание высокоактивных фотохимических реакций, происходящих под действием коротковолновой части солнечной радиации. В стратосфере образуются основные продукты фотохимии Венеры, в том числе — сернокислотный аэрозоль, образующий облака планеты. Температура и давление в стратосфере Венеры падают с высотой, причем высотная зависимость имеет сложный характер. На уровне 70 км температура и давление близки к 210 К и 34 мбар, а у 110 км — к 170 К и 2х10-3 мбар (в среднем). Падение температуры с высотой показывает, что основное условие стратификации не выполняется, поэтому название «стратосфера» не вполне годится для рассматриваемой части атмосферы. Более подошло бы название «фотохемосфера».

Если температура в области стратосферы слабо зависит от времени суток, то в интервале высот 105—130 км суточные ее изменения очень велики. Называть эту область мезосферой можно только условно, поскольку в земной мезосфере (высоты 50—80 км), температура значительно падает с высотой, в то время как изменения температуры в атмосфе­ре Венеры на соответствующих по характеристикам высотах (110— 130 км) имеют суточную зависимость и с высотой могут, как падать, так и возрастать.

Далее, термосфера Венеры значительно холоднее. Несмотря на то, что плотность потока радиации на Венере вдвое больше, чем на Земле, дневные температуры области, расположенной над мезосферой Венеры, очень невысоки, всего 300—350 К. Еще удивительнее оказались ночные температуры в той же области, составляющие всего 100—130 К причем переходы от дневных температур к ночным происходят очень быстро, практически в сумеречной зоне, за 5—8 земных часов. Название «термосфера», очевидно, не годится для верхней атмосферы Венеры. Было предложено два раздельных наименования: термосфера — для дневной части и криосфера («холодная сфера») — для ночной части атмосферы выше 160 км. Механизм быстрого охлаждения криосферы является предметом ис­следований.

Резкое понижение температуры в криосфере ночью приводит к быстрому падению давления.

Изменение давления должно сопровождаться перетеканием газа (на рассматриваемых высотах — с дневной на ночную сторону) и переходом энергии из потенциальной в кинетическую, так как потоки газа опускаются. Скорость охлаждения ночной стороны (криосферы) зависит от количества газа, перетекающего с дневной стороны. Итак, один из выводов, который можно сделать из рассмотрения особенностей строения атмосферы Венеры, заключается в том, что вблизи уровня 100 км проходит естественный раздел между двумя частями атмосферы: ниже 100 км суточные изменения параметров незначительны, выше — наблюдаются сильно выраженные суточные вариации температуры, плотности, давления. Кроме того, в интервале 140—180 км (основание гетеросферы) наблюдается суточная зависимость состава атмосферы.

Ионосфера. Взаимодействие с солнечным ветром

Подобно Земле, Венера обладает ионосферой— областью высокой плотности заряженных частиц, электронов и ионов. Концентрация заряженных частиц на дневной стороне ионосферы лишь в несколько раз меньше, чем в ионосфере Земли. Происхождение дневной ионосферы связано с поглощением в верхней атмосфере наиболее коротковолновой части ультрафиолетовой солнечной радиации (вакуумного ультрафиолетового излучения). В результате фотоионизации газа фотонами большой энергии возникают потоки фотоэлектронов, скорость которых намного превышает тепловую. Состав ионов зависит от состава нейтральной атмосферы, возбуждаемой излучением, а также реакциями, которые связывают образовавшиеся ионы, и массовыми потоками последних в ионосфере. В целом ионосфера остается нейтральной.

Значительно большую высотную протяженность имеет дневная ионосфера. Непостоянный профиль дневной ионосферы Венеры связан с низким положением ионопаузы, что является одной из главных особенностей ионосферы планеты.

Причина заключается в отсутствии у Венеры сколько-нибудь значительного дипольного магнитного момента. Магнитное поле Земли образует магнитосферу, защищающую ее от прямого воздействия солнечного ветра. Положение ударной волны, где газодинамическое давление солнечного ветра становится равным магнитному давлению, для Земли можно считать общеизвестным – на расстоянии 13 радиусов планеты с подсолнечной стороны. Поэтому ионосфера Земли закрыта от солнечного ветра – ионизованной плазмы, движущейся со скоростью около 400 км/сек. Отсутствие магнитного дипольного поля у Венеры приводит к тому, что сама ионосфера действует как препятствие на пути солнечного ветра, образуя ударную волну.

Магнитные «жгуты» являются еще одним источником высокой температуры на планете. «Жгуты» возникают в виде своеобразных магнитно-токовых трубок. Благодаря магнитной гировязкости, «жгуты» сохраняют цельность и ведут себя как своеобразные длинные канаты, толщиной в несколько десятков километров. Под действием магнитного поля ионопаузы и ионного слоя «жгуты» растягиваются за концы и сред ней частью вторгаются в ионосферу, сохраняя свое сильное магнитное поле. Взаимодействие «жгутов» с ионосферой приводит к разогреву электронного компонента. Предполагается, что это — один из основных источников разогрева.

Рис. Схема процессов в ионосфере и ее взаимодействия с солнечным ветром.

Вдоль ионопаузы проходит токовый слой, отделяющий область сильного магнитного поля от ионосферы. При локальном воздействии солнечного ветра на ионопаузе образуется желоб, стенки которого могут замкнуться с образованием токовой трубки, охватывающей магнитное поле. Трубка с протекающим по ее поверхности током далее погружается в ионосферу. В таких же нестабильностях, но выгнутых в сторону переходного слоя, могут образоваться «пузыри» ионосферы, также охваченные током. Такие «пузыри» далее уносятся солнечным ветром. Наряду с этим, солнечным ветром могут захватываться и большие объемы плазмы ионосферы в виде отошедших облаков и вытянутых стримеров.

ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ АТМОСФЕРЫ

Поиск молний в атмосфере планеты

До конца 1978 г. грозовые разряды в атмосфере Земли были уникальным явлением, не известным нигде более на других планетах.

Радиоизлучение Венеры открыто в конце 50-х годов, с началом ее радиоастрономических исследований. Уже в работах Крауса (1956, 1957) предполагалось, что всплески радиошумов от Венеры связаны с молниями в атмосфере планеты. На самом деле радиоизлучение исходит, главным образом, от сильно нагретой поверхности планеты и горячих нижних слоев тропосферы и к электрическим разрядам отношения не имеет. Анализ состава атмосферы, выполнявшийся аппаратами серии «Венера» с 1967 по 1975 г., а позже «Венерой-11—14» и зондами аппарата «Пионер — Венера», привел к проблеме образования некоторых малых газообразных составляющих атмосферы. Можно предположить, что их происхождение связано с электрическими разрядами в атмосфере.

В конце 1978 г. к Венере приблизились космические аппараты «Пионер — Венера», «Венера-11» и «Венера-12», а в начале 1982 г.— «Венера-13» и «Венера-14». Исследования в 1978г. выполнялись с помощью приборов «Гроза» и OEFD, а в 1982 г.— прибором «Гроза-2». Благодаря исследованиям электрической активности Венеры, присутствие частых электрических разрядов в атмосфере Венеры более не вызывает сомнений. Однако выяснение их природы требует дальнейших исследований, так как обстоятельства возникновения разрядов, похоже, связаны с рядом не вполне понятных явлений. Так 21 декабря 1978 г. прибор «Гроза» на «Венере-12», а 25 декабря — на «Венере-11», спускаясь в атмосфере планеты, зарегистрировал множество импульсов электромагнитного поля, по характеру весьма похожих на атмосферики удаленных земных молний.

Почти одновременно поступили сообщения о странных явлениях, которые, возможно, имеют отношение к той же проблеме. На высотах около 12 км на всех зондах аппарата «Пионер — Венера» были повреждены некоторые датчики, установленные независимо и на разных приборах. В качестве вероятной причины назывались электрические разряды.

Связь молний с генерацией отдельных химических компонентов в атмосфере Венеры стала предметом анализа многих работ. Сообщения об экспериментах на «Венерах» и аппарате «Пионер — Венера», стимулировали интерес к проблеме.

Где происходят разряды?

Чтобы понять, как возникают разряды в атмосфере Венеры и каков механизм накопления зарядов, необходимо знать, на какой высоте происходит это явление. Как уже говорилось, радиорефракция свидетельствует в пользу низкорасположенного источника, но пока опираясь на экспериментальные данные, указать определенную высоту источника поля не удается. Предположение о том, что разряды происходят в облачном слое, основано на следующих соображениях. Хорошо известно, что большие пространственные заряды и связанные с ними молнии возникают почти исключительно в грозовых облаках. В некоторых случаях наблюдается накопление зарядов в зимних облаках («зимние молнии»). Известны также молниевые разряды в пылевых бурях и над извергающимися вулканами. Наконец, существует малоисследованное явление образования молний (и, следовательно, присутствия больших зарядов) при безоблачной атмосфере—«гром с ясного неба».

На Земле наибольшие заряды наблюдаются в облаках с частицами сложной структуры, типа гирлянд, и с каплями переохлажденной воды. Напряженность электрического поля велика также для облаков из ледяных кристалликов;

если же облако состоит только из жидких капелек, напряженность оказывается низкой.

В облаках Венеры частицы жидкие и, по-видимому, имеют один и тот же состав, поэтому напряженность поля должна быть небольшой. Кроме того, ряд авторов высказывают сомнения относительно возможности на­копления пространственного заряда в среде, содержащей аэрозоль из сильного электролита — серной кислоты.

По существу, доводы в пользу локализации молний в облачном слое этим исчерпываются.

Таким образом:

Источники электромагнитного излучения (разряды) могут находиться значительно ниже облачного слоя, а механизм накопления объемных зарядов может отличаться от земного.

Кроме того в атмосфере Венеры присутствуют многочисленные электрические разряды, наблюдаемые по их электромагнитному излучению. Частота следования импульсов от одного источника достигает двадцати и более в секунду.

ЗАКЛЮЧЕНИЕ

В исследованиях Венеры с космических аппаратов, в период с конца десятилетия 1960-х по середину 1980-х годов радикально изменились наши представления об этой ближайшей к Земле планете. Начиная с «Венеры-4» — первого аппарата, проникшего в 1967 г. в весьма негостеприимную атмосферу планеты, и до наиболее сложных последних аппаратов, непрерывно возрастали сложность задач и проводимых экспериментов.

Уровень знаний о Венере ныне настолько вырос, что попытка охватить разные области исследований заведомо не может быть одинаково успешной.

Десять проблем, сформулированных ниже, конечно, не могут охватить всех задач, стоящих перед исследованиями будущего. Но все они объединяются взаимосвязью и актуальностью задач.

1. Изучение тектоники планеты, благодаря сходству последней с Землей, представляется чрезвычайно интересным и полезным не только как важнейший вопрос физики Венеры, но и для понимания процессов уникальной тектоники Земли. Ключевым экспериментом здесь были бы измерения тепловых потоков из недр планеты, исследование ее сейсмической активности и внутреннего строения.

2. Поиск активного вулканизма с помощью различных методов – не только позволит установить уровень современной вулканической активности планеты, но и более надежно оценить возраст ее поверхности. Проведение параллельного анализа состава грунта позволит перейти к геохимическому районированию планеты.

3. Картированием поверхности с высоким разрешением с аппаратов «Венера-15 и -16» охвачено около половины территории северного полушария. Подробные радиоизображения для южного полушария позволят изучить глобальное распределение рельефа и получить сведения о неизвестной пока зоне южных высоких широт и провести их геоморфологическую интерпретацию.

4. Имеющиеся данные о содержании благородных газов уже теперь достаточно подробны и будут уточняться в дальнейшем. Но интерпретационная работа, в частности, выводы об особенностях происхождения и эволюции планеты, нуждаются в дальнейшей разработке.

5 Фундаментальным вопросом являются причины обедненности планеты водой. Крайне нужны достаточно точные измерения отношения содержания в атмосфере дейтерия и водорода (протия).

6 Резкие колебания распределения аэрозольного населения облачного слоя неоднократно отмечались в наземных и бортовых измерениях. Столь значительные глобальные изменения характеристик аэрозолей должны иметь в основе весьма крупномасштабные явления. Параллельные наземные патрульные поляриметрические измерения и прямой анализ химического состава малых компонентов аэрозолей и газовой атмосферы непосредственными методами послужат объяснению природы указанных изменений.

7. Благодаря крайне медленному вращению планеты и, как следствие — низкой величине сил Кориолиса, большой протяженности атмосферы и положению полярной оси, близкому к нормали к плоскости орбиты, Венера представляет уникальную естественную лабораторию для изучения динамики ее атмосферы. Особый интерес представляют исследования динамических и структурных особенностей зон полярных воротников и самих полярных районов. Одной из целей исследований динамики является объяснение механизма суперротации атмосферы.

8. Изучение верхней атмосферы и ионосферы Венеры привело к открытию необычных видов ее взаимодействия с солнечным ветром, но оставило нерешенным множество вопросов, в частности, о строении хвоста магнитосферы, о природе полостей в ночной ионосфере и др. Для их решения необходимы как экспериментальные, так и теоретические исследования. Много интересных проблем связано с верхней атмосферой, например, механизмы нетепловой диссипации, переноса кислорода на ночную сторону и другие.

9 Исследование условий развития и сохранения парникового эффекта в атмосфере планеты, получающей от Солнца меньше энергии чем Земля, представляет двойной интерес. Во-первых, это — особенность, определяющая многие аспекты физики Венеры. Во-вторых — фактические данные для расчетов опасности техногенного загрязнения атмосферы Земли.

10. Причины возникновения орбитально-вращательных резонансов (соизмеримостей) планеты относительно Солнца, Земли и Меркурия, а также медленного ретроградного движения остаются неизвестными и требуют теоретической разработки.

Заключение по реферату

Можно полагать, что ближайшее будущее в исследованиях ближайших соседей Земли – планет солнечной системы – Марса и Венеры принадлежит автоматам.

Но мы не сомневаемся, ни на минуту, что когда-нибудь, и может быть, скорее, чем мы думаем, на пыльную почву Марса и горячую поверхность Венеры ступит человек, посланец нашей родной Земли.

Литература

1. В.А. Бронштейн, Планета Марс. – М., 1977.

2. Л.В. Ксанфомалити, Планета Венера. – М.: Наука. Главная редакция физико-математической литературы, 1985.

3. Журнал «НЛО»: 02.2000, 05.2000, 07.2000, 09.2000.

www.neuch.ru

Реферат на тему Планета Венера

Венера Венера – в римской мифологии первоначально богиня весны и садов, впоследствии отождествлялась с греческой богиней Афродитой и почиталась как богиня любви и красоты. Венера – планета, находящаяся на расстоянии от Солнца 0,7 а.е. (1 астрономическая единица = 149,6 млн. км, что является средним расстоянием Земли от солнца), радиусом в среднем 6050 км и массой 4,9х1024 кг. Топографическое описание поверхности планеты Подобно Земле, на Венере имеются горы, равнины, низменности. Обширные горные области, по аналогии с Землёй, мы будем называть континентами. Зелёная, жёлтая и красная окраски соответствуют таким горным районам, к которым относятся три области. Наибольшая из них – Земля Афродиты, расположенная в экваториальной части планеты. Её площадь по уровню 6052,2 км составляет 41 млн. км2. По площади она близка к Африке. В отличие от Земли, остальные континенты Венеры значительно меньше. В сумме континенты на Венере занимают лишь 5-7% территории, в зависимости от того, по какому превышению над средним уровнем считать. Земля Иштар, площадью около 8,5 млн. кв. км является вторым большим континентом. Ориентировочно её площадь близка к Австралии. В её западной части находится вулканическое плато Лакшми, а в центральной части – высочайшие на Венере горы Максвелла, достигающие уровня 11 км. В широтном направлении Земля Иштар тянется на 2500 км. В основном, поверхность Венеры образуют равнины с невысокими холмами, которые называют «волнистыми» равнинами. 56% всей поверхности приходится на интервал высот от –0,5 до +0,5 км. Менее распространены сравнительно неглубокие низины, на карте показанные густым синим тоном; они охватывают около 25% территории. Низменность Равнина Аталанты, площадью около 7 млн. кв. км., представляет более глубокую депрессию, до 1,6-2 км ниже среднего уровня. Равнина Аталанты напоминает лунные моря. Отсутствие на планете «уровня моря» приводит к необходимости вести отсчет от какого-то условного уровня. Согласно Мак-Гиллу и др. (1983) можно выбрать средний радиус поверхности (объем горных пород над этим уровнем равен объему атмосферы во впадинах под ним), медианный радиус, который делит поверхность пополам по площади, и модульный радиус, на который приходится наибольшая площадь, согласно гипсометрической кривой. Краткий обзор поверхности планеты Область Альфа представляет собой невысокое плато с поперечником около 1300 км, высотой по краям около 2,5 км над окружающей местностью (с юга это Равнина Лавинии). В центре плато имеется более или менее правильной формы депрессия, пониженная на 1 – 2 км относительно несплошного вала. Плато имеет крутые склоны (среднеквадратичные уклоны 5 – 10о) и сильно раздробленную поверхность, перерезанную множеством субпараллельных линеаментов (линейных зон тектонических нарушений), вытянутых с юго-запада на северо-восток. Есть мнение, что Альфа может быть останцем древней коры Венеры или древним вулканическим сооружением со следами тектонических разрушений, а круговые образования на плато моут быть метеоритными кратерами, образовавшимися позже. Далее к востоку между юго-восточной оконечностью Земли Иштар и Землей Афродиты находятся Области Белл и Теллуры, разделенные Равниной Леды. Белл и Теллура представляют собой объекты примерно такой же высоты (около 1 – 1,5 км) с основанием около 500 и 1500 км соответственно. Дале к востоку находится обширная равнина Ниобы, примыкающая к Земле Афродиты с севера и равнина Айно, окружающая ее с юга. На севре, на широте Земли Иштар, Равнину Ниобы замыкает невысокая область Тефии (95 – 140о в.д.) и низменность Равнина Аталанты. Далее к востоку на широте 68 – 73о с.ш. расположена Область Метиды, протяженностью около 500 км. К юго-востоку от нее находятся Равнины Седны и Гиневры. Равнина Гиневры имеет несколько возвышенностей в пределах 0,3 – 1 км. Резкое повышение уровня – это Область Астерии (западная часть Беты). На долготе 205 – 220о, к югу от Афродиты и Ульфрун находится Область Имдр, так же представляющая возвышенность 0,5 – 1 км. Сложная по рельефу Область Астерии (255 – 277о в.д.) примыкает с запада к Области Бета. Вытянутые вдоль меридиана Область Бета – Область Фебы и Область Фемиды на юго-востоке Равниной Навки отделены от Области Альфа. С юга Область Имдр и Область Фемиды примыкают к Равнине Елены, на востоке смыкающейся с Равниной Лавинии. На этой равнине, на широте 55о ю.ш. и долготе 322о находится кратер Лизе Майтнер, диаметром 300 км, с валом выозвышающимся на 0,5 км и депрессией в центре глубиной 1 км. Наряду с Лизе Майтнер, найдено большое число других образований, природа которых так же связывается с метеоритной бомбардировкой. Ввиду высокой плотности атмосферы планеты, образование ударных кратеров кажется проблематичным. При изучении данного вопроса было доказано, что крупные метеоритные тела, способные образовать кратеры диаметром 10 км и более тормозятся атмосферой Венеры незначительно. Существенно влияние атмосферы, выражающееся в замедлении и разрушении метеоритных тел диаметром не более 40 м. Другая сторона влияния атмосферы заключается в том, что она препятствует выбросу продуктов разрушения поверхности на большие расстояния. Среднее число метеоритных кратеров на единицу площади используется для определения возраста поверхности, если известно, как менялась плотность метеоритной бомбардировки с течением времени. Этот метод широко используется для определения возраста безатмосферных тел, таких как Луна, Меркурий и с поправкой на разреженную атмосферу – для Марса. Для Венеры с ее плотной атмосферой, определение ее возраста дало интересные результаты. Земля Иштар и прилегающие районы Земля Иштар – своеобразный геоморфологический заповедник на Венере. Если область Бета можно охарактеризовать, как район вулканического рифтогенеза[1] (Кэмпбелл и др., 1984), Землю Афродиты – как континент геологически большого возраста с заметными разрушениями, то Земля Иштар представляет вестма сложный в геоморфологическом отношении комплекс, объединяющий совершенно несходные элементы рельефа. Очень условно ее можно разделить на следующие части: обширное высокогорное Плато Лакшми, Горы Максвелла, прилегающие к нему с востока, и расположенный на восточной оконечности континента район особого рельефа. Плато Лакшми расположено на высоте 3 – 4 км. Исследователи сравнивают Плато Лакшми с земным Тибетом, однако последний вдвое меньше. С востока, где плато несколько понижается, это комплекс Гор Максвелла, с севера – Горы Фрейи, с запада – Горы Акны. С южной стороны проходит довольно пологий Уступ Весты, переходящий в еще один уступ – Уступ Ут. Эксперементы с радиолокатором бокового обзора на искусственных спутниках планеты – «Венера-15», «Венера-16» и снимки, полученные в эксперименте, стали огромным шагом вперед, позволившим перейти от полудогадок о природе поверхности к анализу фактов методами современной геоморфологии. Изучение материалов, касающихся Плато Лакшми, окружающих гор, да и всей Земли Иштар в целом, указывает на мощные процессы локальной тектоники, приведшие к ее образованию. Еще некоторые типы рельефа в окрестностях Земли Иштар, которые свидетельствуют о тектонической активности планеты. Исследователи назвали их овоидами. Это образования, которые не имеют прямых аналогов на Земле и других планетах. Овоиды находящиеся в районе Мнемосины, между западной оконечностью Земли Иштар и Областью Метиды, это образования более или менее правильной формы, диаметром до 400 км и сложной структурой концентрических и дугообразных гряд, разделенных несколькими километрами. Происхождение их, как предполагают ученые (Барсуков и др.), имеет тектоно-магматическую природу: при остывании образовавшегося куполообразного поднятия происходило сползание и смятие пород, в результате чего образовался данный рельеф. Имеются и другие объяснения, но влюбом случае овоиды – проявление тектонической активности планеты, возможно в достаточно далеком прошлом. Подобные образования свойственны Области Теллуры шириной около 400 км, представляющую собой возвышенность, окруженну вулканическими равнинами. Весьма похожий, но более хаотичный рельеф имеет восточная часть Земли Иштар, к которой с севера и с юга примыкают типичные вулканические равнины. При анализе полученных материалов учеными был обнаружен новый вид рельефа, который широко распространен на Венере. Барсуков и др. предложили для него название «паркет» (имея в виду рисунок но не гладкость). Он так же не имеет прямых аналогов на Земле и состоит из частых чередующихся невысоких гряд возвышенностей и долин. В ряде случаев в их расположении видна определенная закономерность, а расположение соседних полос гряд имеет ортогональный рисунок. Таким образом на поверхности Венеры преобладают вулканические и вулкано-тектонические равнины, есть лавовые плато, а ряд образований может иметь вулканическую природу. Высочайшим тектоническим сооружением на планете является горный массив Максвелл, находящийся в центральной части Земли Иштар. Сведения о нем получены из двух источников: радиолокации спутников планеты «Венеры-15 и –16» и наземной радиолокации. Для определения возраста Плато Лакшми, Гор Максвелла и Земли Иштар в целом и вулканических равнин окружающего района использовался уже упоминавшийся метод регистрации плотности метеоритных кратеров на единицу поверхности. Исходя из модельных расчетов и опираясь на сведения о плотности и возрасте кратеров на Меркурии, Луне, Марсе, ученые (Барсуков и др.) пришли к выводу, что вероятный возраст Плато Лакшми и Земли Иштар в целом 0,5 – 1 млрд. лет и что древняя кратерированная поверхность, относящаяся к периоду максимума метеоритной бомбардировки ( 3,9 млрд. лет ), на Венере не сохранилась, как и на Земле. В отличии от Земли, на Венере сохраняются кратеры возрастом до 1 млрд. лет, в то время как на Земле они разрушаются за несколько миллионов лет. Типичный метеоритный кратер на поверхности Венеры Несмотря на огромные технические трудности, связанные с высокими температурой и давлением, первые прямые телевизионные снимки поверхности планеты появились задолго до радиолокационных бортовых экспериментов.

Выветривание горных пород На Земле выветривание происходит под действием смены температур, потоков воды, осадков (особенно фазовых переходов воды), эрозии переносимой пылью и в результате активности биосферы. Небольшую роль могут играть также сейсмические явления. Наконец, существует химическое выветривание. На Венере атмосфера поддерживает постоянную температуру поверхности, зависящую только от гипсометрического уровня по­следней. Суточные колебания температуры не превышают единиц кельвинов, широтной зависимости температур для поверхности почти нет. Нагрев поверхности днем незначительной частью солнечной радиации, достигающей поверхности, не вызывает заметных изменений температуры благодаря эффективному теплообмену с атмосферой. Таким образом, выветривание из-за изменений температур горных пород и образования в них механических напряжений исключается. Вода в жидкой фазе, какие-либо другие осадки и сколько-нибудь значительная влажность также исключаются. Согласно существующим представлениям существование биосферы на Венере невозможно. Местные разрушения горных пород на планете могут происходить в результате теплового эффекта вулканических извержений и воздействия потоков лавы, если активный вулканизм существует на Венере в нынешнюю эпоху. Однако подобные процессы имеют локальный характер и ограничены во времени. Механические разрушения происходят также в результате тектонических процессов (в том числе сейсмических явлений), с признаками которых мы встречались при описании поверхности планеты (складчатые горы в обрамлении Плато Лакшми, разрушенные скальные породы). В этих условиях медленным, но постоянно действующим фактором является химическое выветривание в результате термохимических реакций между поверхностью и атмосферой. Главными агентами атмосферы, вызывающими химическое выветривание, являются серосодержащие газы. Их взаимодействие с поверхностью приводит к связыванию серы в продуктах выветривания, что обогащает верхний слой грунта серой почти на два порядка по сравнению с Землей. Общие представления об атмосфере Венеры Тепловое радиоизлучение Венера обладает наиболее массивной атмосферой из всех планет земной группы. Если отношение массы атмосферы к массе планеты для Земли составляет 0,86 х10-6, то для Венеры оно в 110 раз больше: 0,96 х10-4. Основные составляющие атмосферы — углекислый газ (96,5%) и азот (около 3,5%). Все остальные газы, присутствующие в атмосфере, вместе взятые, не превосходят 0,1 %. Поэтому в первом приближении атмосферу Венеры можно рассматривать как сухой углекислый газ. Тропосфера Венеры (нижний «этаж» атмосферы, где температура почти линейно падает с высотой) имеет высокую плотность и обладает значительной протяженностью. Так, ниже уровня, соответствующего «нормальным» земным условиям по давлению и температуре, находится своеобразный газовый океан 50-километровой глубины, состоящий из сильно сжатого и нагретого до высокой температуры газа. Даже если бы атмосфера Венеры была свободна от аэрозолей, попытка увидеть поверхность планеты сквозь столь значительную толщу газа была бы безрезультатной. Благодаря сильному рассеянию (и частичному поглощению) света атмосферой, последняя практически непрозрачна для внешнего наблюдателя во всем диапазоне частот, кроме радиоволн. Значительно прозрачнее атмосфера в диапазоне сантиметровых и дециметровых радиоволн, где и удалось впервые зарегистрировать излучение нагретой поверхности планеты. Сказанное не означает, однако, что солнечный свет не проникает глубоко в атмосферу; в рассеянном виде он достигает поверхности планеты. Схема строения атмосферы Венеры выглядит следующим образом. В интервале высот 47—70 км над поверхностью расположен протяженный слой тумана средней плотности, который по традиции называют облаками Венеры. От земных они отличаются не только низкой плотностью, малым массовым содержанием и микроскопическими размерами частиц, но ивесьма экзотическим составом: это мельчайшие капли высококонцентрированной серной кислоты. Облаков водного состава на Венере не бывает, а относитеьное содержание водяного пара в атмосфере очень мало, в 50 – 70 раз меньше, чем в земной атмосфере. Верхняя граница облаков у 65—70 км имеет размытый характер и постепенно переходит в надоблачную дымку, поднимающуюся еще на 15—20 км. Дымка имеет непостоянную плотность, которая подвержена сильным изменениям с характерным временем около года или менее. Нижняя граница облаков у 47 км выражена весьма четко; но и ниже уровня 47 км имеется слабая дымка, простирающаяся вниз также километров на 15. Ниже 30 км атмосфера Венеры практически свободна от аэрозолей. Как показывают измерения, температура у поверхности на уровне радиуса 6051,6 км составляет 735 К, давление 92 бар. С высотой температура и давление быстро падают. На уровне при­мерно 53 км условия близки к земным «нормальным»: от уровня с Т=293 К, где р~0,5 бар, до Т=340 К, где р =1 бар. Высокие температуры у поверхности определяются одной из главных особенностей атмосферы планеты: сильным парниковым эффектом. Солнечная радиация проникает глубоко в атмосферу и поглощается поверхностью и атмосферой. Однако для длинноволнового теплового излучения атмосфера малопрозрачна, что и создает высокие температуры у поверхности. Факт высокой температуры поверхности был установлен еще до начала зондирования атмосферы Венеры космическими аппаратами, по радиофизическим исследованиям планеты (Майер, 1963). Как любое нагретое тело, поверхность излучает значительную мощность в радиодиапазоне. Поэтому измерение яркостной температуры радиоизлучения можно связать с термодинамической температурой поверхности. К первым серьезным исследованиям этого рода относятся работы Майера и др. (1957, 1958). Особенно большое число радиоастрономических измерений было проведено с 1962 по 1970 г. Далее начались прямые измерения на поверхности и проблема утратила актуальность. Наиболее высокие температуры наблюдаются в диапазоне 3—15 см, до 660 К. Химический состав атмосферы Подробные сведения об истории исследований состава атмосферы планеты можно найти в монографии «Венера» (Цан и др., 1983), а также в более ранних работах и изданиях: Л. Янг (1974), Кузьмин и Маров (1974), Мороз (1981) и других. В изучении состава атмосферы большую роль сыграли как космические, так и традиционные наземные, прежде всего — спектрометрические исследования (Конн и др. 1967).

Основная составляющая атмосферы планеты — углекислый газ. Спектрометрически он был отождествлен в атмосфере Венеры еще в 1932 г., в работе Адамса и Данхэма (1932). Однако до полета «Венеры-4» в 1967 г. оценки его содержания значительно колебались. Измерения «Венеры-4» и последующие более точные измерения «Венеры-5 и -6» практически закрыли вопрос об основных составляющих. Углекислый газ. Атмосфера Венеры почти полностью состоит из углекислого газа, который выделился из коры планеты в процессе ее дегазации. На первый взгляд, на Венере запасы углекислого газа намного больше, чем на Земле. Различие снижается на 2 порядка, если учесть примерно в 60 раз большее количество углекислого га­за, растворенного в океанах Земли. Растворенный газ находится в динамическом равновесии с СО2 в атмосфере и демпфирует изменения его содержания. Постоянная времени обмена для океана близка к 7 годам. Однако подлинным резервуаром углекислого газа являются карбонаты в осадочных породах Земли. Азот. Причина повышенного содержания азота в атмосфере, как предполагается, так же лежит в высокой температуре поверхности, из-за чего весь азот Венеры перешел в атмосферу. Средняя и верхняя атмосфера На Венере тропопауза — переход от тропосферы к стратосфере — совпадает с верхней границей облаков. Тропопауза в земной атмосфере характеризуется переходом к очень малому вертикальному градиенту температуры. Стратосфера Земли отличается быстрым ростом температуры с высотой в интервале 35—55 км, что объясняется присутствием озона, поглощающего коротковолновую часть солнечной радиации. «Озоновый» максимум температур приходится на интервал 40—55 км, что придает земному профилю характерный вид. В атмосфере Венеры озон практически отсутствует, и выделение области стратосферы достаточно условно. Главная ее особенность — преобладание высокоактивных фотохимических реакций, происходящих под действием коротковолновой части солнечной радиации. В стратосфере образуются основные продукты фотохимии Венеры, в том числе — сернокислотный аэрозоль, образующий облака планеты. Температура и давление в стратосфере Венеры падают с высотой, причем высотная зависимость имеет сложный характер. На уровне 70 км температура и давление близки к 210 К и 34 мбар, а у 110 км — к 170 К и 2х10-3 мбар (в среднем). Падение температуры с высотой показывает, что основное условие стратификации не выполняется, поэтому название «стратосфера» не вполне годится для рассматриваемой части атмосферы. Более подошло бы название «фотохемосфера». Если температура в области стратосферы слабо зависит от времени суток, то в интервале высот 105—130 км суточные ее изменения очень велики. Называть эту область мезосферой можно только условно, поскольку в земной мезосфере (высоты 50—80 км), температура значительно падает с высотой, в то время как изменения температуры в атмосфе­ре Венеры на соответствующих по характеристикам высотах (110— 130 км) имеют суточную зависимость и с высотой могут, как падать, так и возрастать. Далее, термосфера Венеры значительно холоднее. Несмотря на то, что плотность потока радиации на Венере вдвое больше, чем на Земле, дневные температуры области, расположенной над мезосферой Венеры, очень невысоки, всего 300—350 К. Еще удивительнее оказались ночные температуры в той же области, составляющие всего 100—130 К причем переходы от дневных температур к ночным происходят очень быстро, практически в сумеречной зоне, за 5—8 земных часов. Название «термосфера», очевидно, не годится для верхней атмосферы Венеры. Было предложено два раздельных наименования: термосфера — для дневной части и криосфера («холодная сфера») — для ночной части атмосферы выше 160 км. Механизм быстрого охлаждения криосферы является предметом ис­следований. Резкое понижение температуры в криосфере ночью приводит к быстрому падению давления. Изменение давления должно сопровождаться перетеканием газа (на рассматриваемых высотах — с дневной на ночную сторону) и переходом энергии из потенциальной в кинетическую, так как потоки газа опускаются. Скорость охлаждения ночной стороны (криосферы) зависит от количества газа, перетекающего с дневной стороны. Итак, один из выводов, который можно сделать из рассмотрения особенностей строения атмосферы Венеры, заключается в том, что вблизи уровня 100 км проходит естественный раздел между двумя частями атмосферы: ниже 100 км суточные изменения параметров незначительны, выше — наблюдаются сильно выраженные суточные вариации температуры, плотности, давления. Кроме того, в интервале 140—180 км (основание гетеросферы) наблюдается суточная зависимость состава атмосферы. Ионосфера. Взаимодействие с солнечным ветром Подобно Земле, Венера обладает ионосферой— областью высокой плотности заряженных частиц, электронов и ионов. Концентрация заряженных частиц на дневной стороне ионосферы лишь в несколько раз меньше, чем в ионосфере Земли. Происхождение дневной ионосферы связано с поглощением в верхней атмосфере наиболее коротковолновой части ультрафиолетовой солнечной радиации (вакуумного ультрафиолетового излучения). В результате фотоионизации газа фотонами большой энергии возникают потоки фотоэлектронов, скорость которых намного превышает тепловую. Состав ионов зависит от состава нейтральной атмосферы, возбуждаемой излучением, а также реакциями, которые связывают образовавшиеся ионы, и массовыми потоками последних в ионосфере. В целом ионосфера остается нейтральной. Значительно большую высотную протяженность имеет дневная ионосфера. Непостоянный профиль дневной ионосферы Венеры связан с низким положением ионопаузы, что является одной из главных особенностей ионосферы планеты. Причина заключается в отсутствии у Венеры сколько-нибудь значительного дипольного магнитного момента. Магнитное поле Земли образует магнитосферу, защищающую ее от прямого воздействия солнечного ветра. Положение ударной волны, где газодинамическое давление солнечного ветра становится равным магнитному давлению, для Земли можно считать общеизвестным – на расстоянии 13 радиусов планеты с подсолнечной стороны. Поэтому ионосфера Земли закрыта от солнечного ветра – ионизованной плазмы, движущейся со скоростью около 400 км/сек. Отсутствие магнитного дипольного поля у Венеры приводит к тому, что сама ионосфера действует как препятствие на пути солнечного ветра, образуя ударную волну. Магнитные «жгуты» являются еще одним источником высокой температуры на планете. «Жгуты» возникают в виде своеобразных магнитно-токовых трубок. Благодаря магнитной гировязкости, «жгуты» сохраняют цельность и ведут себя как своеобразные длинные канаты, толщиной в несколько десятков километров. Под действием магнитного поля ионопаузы и ионного слоя «жгуты» растягиваются за концы и сред ней частью вторгаются в ионосферу, сохраняя свое сильное магнитное поле. Взаимодействие «жгутов» с ионосферой приводит к разогреву электронного компонента. Предполагается, что это — один из основных источников разогрева. Рис. Схема процессов в ионосфере и ее взаимодействия с солнечным ветром. Вдоль ионопаузы проходит токовый слой, отделяющий область сильного магнитного поля от ионосферы. При локальном воздействии солнечного ветра на ионопаузе образуется желоб, стенки которого могут замкнуться с образованием токовой трубки, охватывающей магнитное поле. Трубка с протекающим по ее поверхности током далее погружается в ионосферу. В таких же нестабильностях, но выгнутых в сторону переходного слоя, могут образоваться «пузыри» ионосферы, также охваченные током. Такие «пузыри» далее уносятся солнечным ветром. Наряду с этим, солнечным ветром могут захватываться и большие объемы плазмы ионосферы в виде отошедших облаков и вытянутых стримеров. ЭЛЕКТРИЧЕСКАЯ АКТИВНОСТЬ АТМОСФЕРЫ Поиск молний в атмосфере планеты До конца 1978 г. грозовые разряды в атмосфере Земли были уникальным явлением, не известным нигде более на других планетах. Радиоизлучение Венеры открыто в конце 50-х годов, с началом ее радиоастрономических исследований. Уже в работах Крауса (1956, 1957) предполагалось, что всплески радиошумов от Венеры связаны с молниями в атмосфере планеты. На самом деле радиоизлучение исходит, главным образом, от сильно нагретой поверхности планеты и горячих нижних слоев тропосферы и к электрическим разрядам отношения не имеет. Анализ состава атмосферы, выполнявшийся аппаратами серии «Венера» с 1967 по 1975 г., а позже «Венерой-11—14» и зондами аппарата «Пионер — Венера», привел к проблеме образования некоторых малых газообразных составляющих атмосферы. Можно предположить, что их происхождение связано с электрическими разрядами в атмосфере. В конце 1978 г. к Венере приблизились космические аппараты «Пионер — Венера», «Венера-11» и «Венера-12», а в начале 1982 г.— «Венера-13» и «Венера-14». Исследования в 1978г. выполнялись с помощью приборов «Гроза» и OEFD, а в 1982 г.— прибором «Гроза-2». Благодаря исследованиям электрической активности Венеры, присутствие частых электрических разрядов в атмосфере Венеры более не вызывает сомнений. Однако выяснение их природы требует дальнейших исследований, так как обстоятельства возникновения разрядов, похоже, связаны с рядом не вполне понятных явлений. Так 21 декабря 1978 г. прибор «Гроза» на «Венере-12», а 25 декабря — на «Венере-11», спускаясь в атмосфере планеты, зарегистрировал множество импульсов электромагнитного поля, по характеру весьма похожих на атмосферики удаленных земных молний. Почти одновременно поступили сообщения о странных явлениях, которые, возможно, имеют отношение к той же проблеме. На высотах около 12 км на всех зондах аппарата «Пионер — Венера» были повреждены некоторые датчики, установленные независимо и на разных приборах. В качестве вероятной причины назывались электрические разряды. Связь молний с генерацией отдельных химических компонентов в атмосфере Венеры стала предметом анализа многих работ. Сообщения об экспериментах на «Венерах» и аппарате «Пионер — Венера», стимулировали интерес к проблеме. Где происходят разряды? Чтобы понять, как возникают разряды в атмосфере Венеры и каков механизм накопления зарядов, необходимо знать, на какой высоте происходит это явление. Как уже говорилось, радиорефракция свидетельствует в пользу низкорасположенного источника, но пока опираясь на экспериментальные данные, указать определенную высоту источника поля не удается. Предположение о том, что разряды происходят в облачном слое, основано на следующих соображениях. Хорошо известно, что большие пространственные заряды и связанные с ними молнии возникают почти исключительно в грозовых облаках. В некоторых случаях наблюдается накопление зарядов в зимних облаках («зимние молнии»). Известны также молниевые разряды в пылевых бурях и над извергающимися вулканами. Наконец, существует малоисследованное явление образования молний (и, следовательно, присутствия больших зарядов) при безоблачной атмосфере—«гром с ясного неба». На Земле наибольшие заряды наблюдаются в облаках с частицами сложной структуры, типа гирлянд, и с каплями переохлажденной воды. Напряженность электрического поля велика также для облаков из ледяных кристалликов; если же облако состоит только из жидких капелек, напряженность оказывается низкой. В облаках Венеры частицы жидкие и, по-видимому, имеют один и тот же состав, поэтому напряженность поля должна быть небольшой. Кроме того, ряд авторов высказывают сомнения относительно возможности на­копления пространственного заряда в среде, содержащей аэрозоль из сильного электролита — серной кислоты. По существу, доводы в пользу локализации молний в облачном слое этим исчерпываются. Таким образом: Источники электромагнитного излучения (разряды) могут находиться значительно ниже облачного слоя, а механизм накопления объемных зарядов может отличаться от земного. Кроме того в атмосфере Венеры присутствуют многочисленные электрические разряды, наблюдаемые по их электромагнитному излучению. Частота следования импульсов от одного источника достигает двадцати и более в секунду.

ЗАКЛЮЧЕНИЕ В исследованиях Венеры с космических аппаратов, в период с конца десятилетия 1960-х по середину 1980-х годов радикально изменились наши представления об этой ближайшей к Земле планете. Начиная с «Венеры-4» — первого аппарата, проникшего в 1967 г. в весьма негостеприимную атмосферу планеты, и до наиболее сложных последних аппаратов, непрерывно возрастали сложность задач и проводимых экспериментов. Уровень знаний о Венере ныне настолько вырос, что попытка охватить разные области исследований заведомо не может быть одинаково успешной. Десять проблем, сформулированных ниже, конечно, не могут охватить всех задач, стоящих перед исследованиями будущего. Но все они объединяются взаимосвязью и актуальностью задач. 1. Изучение тектоники планеты, благодаря сходству последней с Землей, представляется чрезвычайно интересным и полезным не только как важнейший вопрос физики Венеры, но и для понимания процессов уникальной тектоники Земли. Ключевым экспериментом здесь были бы измерения тепловых потоков из недр планеты, исследование ее сейсмической активности и внутреннего строения. 2. Поиск активного вулканизма с помощью различных методов – не только позволит установить уровень современной вулканической активности планеты, но и более надежно оценить возраст ее поверхности. Проведение параллельного анализа состава грунта позволит перейти к геохимическому районированию планеты. 3. Картированием поверхности с высоким разрешением с аппаратов «Венера-15 и -16» охвачено около половины территории северного полушария. Подробные радиоизображения для южного полушария позволят изучить глобальное распределение рельефа и получить сведения о неизвестной пока зоне южных высоких широт и провести их геоморфологическую интерпретацию. 4. Имеющиеся данные о содержании благородных газов уже теперь достаточно подробны и будут уточняться в дальнейшем. Но интерпретационная работа, в частности, выводы об особенностях происхождения и эволюции планеты, нуждаются в дальнейшей разработке. 5 Фундаментальным вопросом являются причины обедненности планеты водой. Крайне нужны достаточно точные измерения отношения содержания в атмосфере дейтерия и водорода (протия). 6 Резкие колебания распределения аэрозольного населения облачного слоя неоднократно отмечались в наземных и бортовых измерениях. Столь значительные глобальные изменения характеристик аэрозолей должны иметь в основе весьма крупномасштабные явления. Параллельные наземные патрульные поляриметрические измерения и прямой анализ химического состава малых компонентов аэрозолей и газовой атмосферы непосредственными методами послужат объяснению природы указанных изменений. 7. Благодаря крайне медленному вращению планеты и, как следствие — низкой величине сил Кориолиса, большой протяженности атмосферы и положению полярной оси, близкому к нормали к плоскости орбиты, Венера представляет уникальную естественную лабораторию для изучения динамики ее атмосферы. Особый интерес представляют исследования динамических и структурных особенностей зон полярных воротников и самих полярных районов. Одной из целей исследований динамики является объяснение механизма суперротации атмосферы. 8. Изучение верхней атмосферы и ионосферы Венеры привело к открытию необычных видов ее взаимодействия с солнечным ветром, но оставило нерешенным множество вопросов, в частности, о строении хвоста магнитосферы, о природе полостей в ночной ионосфере и др. Для их решения необходимы как экспериментальные, так и теоретические исследования. Много интересных проблем связано с верхней атмосферой, например, механизмы нетепловой диссипации, переноса кислорода на ночную сторону и другие. 9 Исследование условий развития и сохранения парникового эффекта в атмосфере планеты, получающей от Солнца меньше энергии чем Земля, представляет двойной интерес. Во-первых, это — особенность, определяющая многие аспекты физики Венеры. Во-вторых — фактические данные для расчетов опасности техногенного загрязнения атмосферы Земли. 10. Причины возникновения орбитально-вращательных резонансов (соизмеримостей) планеты относительно Солнца, Земли и Меркурия, а также медленного ретроградного движения остаются неизвестными и требуют теоретической разработки.

Заключение по реферату Можно полагать, что ближайшее будущее в исследованиях ближайших соседей Земли – планет солнечной системы – Марса и Венеры принадлежит автоматам. Но мы не сомневаемся, ни на минуту, что когда-нибудь, и может быть, скорее, чем мы думаем, на пыльную почву Марса и горячую поверхность Венеры ступит человек, посланец нашей родной Земли.

Литература 1. В.А. Бронштейн, Планета Марс. – М., 1977. 2. Л.В. Ксанфомалити, Планета Венера. – М.: Наука. Главная редакция физико-математической литературы, 1985. 3. Журнал «НЛО»: 02.2000, 05.2000, 07.2000, 09.2000.

bukvasha.ru

Реферат Астрономия Планета Венера

Введение Венера - вторая после Меркурия по удаленности от Солнца (108млн.км) планета земной группы. Ее орбита имеет форму почти правильного круга (эксцентриситет 0,007). Венера совершает облет Солнца за 224,7 земных суток со скоростью 35 км/сек. Особенность движения Венеры в космосе: если все планеты (кроме Урана) вращаются вокруг своей оси против часовой стрелки (если смотреть со стороны Северного полюса мира), то Венера вращается в противоположном направлении - по часовой стрелке. Ось вращения Венеры почти перпендикулярна к орбитальной плоскости (наклон 3 ), поэтому там отсутствуют сезоны года - один день похож на другой, имеет одинаковую продолжительность и одинаковую погоду. Эта погодная однотипность еще больше усиливается специфичностью венерианской атмосферы - ее сильным парниковым эффектом. Изучение Венеры Докосмическое время. На заре телескопической астрономии великий Галилей опубликовал анаграмму: «Не оконченное и скрытое прочтено мною». Расшифровка содержала известие о том, что мать любви (Венера) наблюдается в различных фазах подобно Луне (Цинтии): « Мать любви подражает фигурам Цинтии». За этим открытием , окончательно утвердившим правоту гелиоцентрической системы Коперника , в изучении Венеры последовали полтора века застоя. Фоном служили многочисленные заявки на псевдооткрытия вроде свидетельства Франческо Фонтаны из Неаполя, который в 1643 г. увидел на Венере горы, поднимавшиеся на несколько десятков километров .* Спор о Гималаях на Венере впоследствии не затухал , и самым курьезным является то, что современные планетологи действительно обнаружили на Венере высокие горные кряжи. К прохождению Венеры по диску Солнца 1761 г. относится выдающееся открытие, сделанное М.В.Ломоносовым , которое было совершенно точно истолковано его автором как открытие атмосферы Венеры. Отчет М.В.Ломоносова об этом открытии отличается ясностью ____________________ * Граница дня и ночи - терминатор - на Венере изломана. Фонтана действовал применительно к Венере так же , как гениальный Галилей применительно к Луне: он наивно полагал , что изломанность терминатора Венеры зависит от теней, отбрасываемых рельефом. Отсюда нелепый результат, поскольку неправильность терминатора Венеры зависит лишь от облачности. и образностью. «...Ожидая вступления Венерина на Солнце ... увидел наконец, что солнечный край чаемого вступления стал неявственен и несколько будто стушеван, а прежде был весьма чист и везде равен... При выступлении Венеры из Солнца, когда передний ее край стал приближаться к солнечному краю...появился на краю Солнца пупырь, который тем явственнее учинился, чем ближе Венера к выступлению приходила... Сие не что иное показывает, как преломление лучей солнечных в Венериной атмосфере...» Открытие М.В.Ломоносова поставило точку над i: поверхность Венеры в оптическом диапазоне никогда не наблюдается , поскольку она укрыта от глаз непроницаемой завесой облаков. Предположения о природе поверхности этой планеты вплоть до второй половины нашего века оставались по этой причине более или менее фантастическими. Одна из прежних гипотез рисовала гигантский безбрежный океан, покрывающий всю без исключения поверхность планеты. Согласно другим гипотезам, лик планеты должен был представлять собой выжженную , абсолютно безводную пустыню, а знаменитые облака - минеральную пыль в бурно циркулирующей атмосфере. Сторонники еще одной точки зрения исходили из того, что условия на Венере близки к тем, которые были на Земле в каменноугольный период, - жаркий климат с обилием влаги. Но в прежние времена ни одна из догадок о природе поверхности этой планеты так и не получила ранга научной теории. Астрономам попросту не хватало наблюдательных фактов. Не удавалось доже достоверно определить период вращения Венеры вокруг оси. Серьезный прогресс в изучении соседней с Землей планеты наступил лишь с применением радиолокации и началом полетов к Венере автоматических космических аппаратов. Правда о Венере оказалась удивительнее любой фантазии. Космическая эра. Исследования Венеры начинаются с посылки к ней первых космических аппаратов. Вначале перед ними ставилась задача помимо изучения межпланетного пространства проникнуть в атмосферу и дать конкретные данные о ее физических и химических параметрах, а затем и о ее поверхности и грунте. Как и изучение Луны и Марса автоматическими межпланетными станциями, исследование Венеры осуществлялось советскими и американскими учеными. Советские исследования. За 20-летний срок, с 12 февраля 1961 г. до конца 1983 г., в направлении Венеры было запущено 16 космических станций типа «Венера». Последняя из них («Венера-16») была выведена на орбиту искусственного спутника Венеры 14 октября 1983 г. и с этого времени начала передавать информацию в Центр дальней космической связи СССР. Первые две советские космические станции («Венера - 1, -2») прошли мимо Венеры. Во время полета они передавали на Землю информацию о космическом пространстве. «Венера-3» стартовала 16 ноября 1965 г., а 1 марта 1966 г. достигла Венеры. Это был первый в истории человечества межпланетный перелет. Следующим был полет «Венеры-4». Она была запущена 12 июля 1967 г., а 18 октября того же года достигла окрестностей Венеры и отделила спускаемый аппарат , который в течение полутора часов передавал на Землю уникальные данные о параметрах атмосферы. На высоте 23 км над поверхностью планеты, где температура была 325 С, а давление 17,6 кг/см2, спускаемый аппарат разрушился. 5 января 1969 г. стартовала «Венера-5», а 10 января - «Венера -6». 16 и 17 мая того же года они вошли в атмосферу Венеры и провели исследование ее глубоких слоев. Были уточнены данные о параметрах атмосферы, полученные станцией «Венера-4». В химическом составе венерианской атмосферы оказалось 97% углекислого газа. Хотя спускаемые аппараты станции «Венера-5» и «Венера- 6» имели более прочную конструкцию , все же они не выдержали огромного давления и разрушились на высоте 20 км над поверхностью. Лишь спускаемому аппарату следующей советской космической станции «Венера-7» , имевшему усовершенствованную конструкцию, удалось впервые в истории космонавтики пересечь всю толщу венерианской атмосферы и достичь поверхности . Станция была запущена 17 августа 1970 г., а спускаемый отсек 15 декабря совершил посадку. В течение всего времени спуска отсек передавал информацию о параметрах атмосферы и в течение 23 минут - с поверхности планеты. В месте посадки температура оказалась около 500 С, а давление порядка 100 атмосфер. Автоматическая станция «Венера-8» была запущена 27 марта 1972 г. с промежуточной околоземной орбиты. Через 117 суток полета , 22 июля 1972 г., станция достигла окрестностей Венеры и отделила от себя спускаемый аппарат. В месте его посадки на поверхность планеты зафиксировано давление в 90 раз выше , чем на Земле, а температура 470 С. «Венера-9» и «Венера-10» запущены соответственно 8 и 14 июня 1975 г., а 22 и 25 октября того же года их спускаемые аппараты достигли поверхности планеты и впервые в истории космонавтики передали на Землю ее изображение. Сами же станции стали первыми искусственными спутниками Венеры. 9 и 14 сентября 1978 г. соответственно стартовали «Венера-11» и «Венера-12». Спускаемые аппараты станций совершили мягкую посадку, зафиксировав в невысоких слоях атмосферы многократные электрические разряды - предположительно вспышки молний. Отделив спускаемые аппараты, станции продолжали всестороннее исследование космического пространства. 30 октября 1981 г. была запущена автоматическая межпланетная станция «Венера- 13». Преодолев за 4 месяца расстояние более 300 млн. Км, станция 1 марта 1982 г. отделила от себя спускаемый аппарат , прошла на расстоянии 36000 км от поверхности Венеры и продолжала полет по гелиоцентрической орбите как искусственная планета вокруг Солнца. Спускаемый аппарат провел цветное фотографирование поверхности и установил базальтовый состав грунта. Температура оказалась равной 457 С, давление 89 атмосфер. 4 ноября 1981 г. произошел запуск «Венеры-14». Она имела такую же программу исследования, что и «Венера-13». ЕЕ спускаемый аппарат регистрировал температуру, давление, состав атмосферы, бра робы грунта; фиксировались электрические разряды в нижней атмосфере. После отделения спускаемого аппарата станция продолжала исследование космического пространства. Спускаемые аппараты станций были снабжены устройствами для бурения грунта и химического анализа его образцов. В месте посадки спускаемого аппарата станции «Венера-14» температура оказалась 465 С, а давление 94 атмосферы. Передачи на Землю панорамных изображений окружающей местности осуществлялись через цветные светофильтры. В получаемых изображениях преобладали желтовато-оранжевые , зеленоватые цвета любых предметов на поверхности, оранжеватое небо и такого цвета облака над головой. Дело в том, что синяя часть спектра солнечной радиации поглощается в верхней части атмосферы Венеры, поэтому ее поверхность и нижняя часть атмосферы освещаются не белым, как на Земле, а желтым светом. Таковы законы оптики. Перед «Венерами -15 и -16» поставлены новые задачи: провести радиолокационную съемку Северной полярной области. Для этой цели на космических аппаратах , выведенных на вокругпланетные орбиты , были установлены радиолокационные станции бокового обзора. 16 октября 1983 г. «Венера-15» провела целый сеанс радиозондирования планеты. Получено изображение приполярной области площадью более миллиона квадратных километров, имеющей вид полосы длиной 9 тыс., а шириной 150 км. На изображении различаются ударные кратеры, гряды возвышенностей, крупные разломы, горные хребты, уступы и детали рельефа размером 1 -2 км. В апреле 1984 г. по московскому телевидению передавалось сообщение о продолжающейся радиолокационной съемке северной полярной области Венеры и детальной обработке информации , поступающей с орбитальных станций «Венера - 15» и «Венера-16». Американские исследования. Американцами были запущены к Венере четыре автоматические станции со спускаемыми аппаратами. Дважды пролетел и делал телевизионную съемку венерианской поверхности «Маринер-10» . Применяя специальное радарное устройство в сочетании с использованием наземных радиотелескопов, спутник «Пионер-Венера-1» проводил съемку поверхности планеты между шестидесятыми параллелями. Результаты исследований. 1. Посылкой автоматических аппаратов к Венере удалось раскрыть состав , вертикальную структуру и динамику атмосферы. 2. Методом бурения и другими методами установлен химический состав грунта, тип поверхностных горных пород. 3. Осуществлена радарная съемка поверхности Венеры. 4. Вследствие очень высоких температур и давления жизнь на Венере отсутствует. Атмосфера Загадочная атмосфера Венеры была центральным пунктом программы исследований при помощи автоматический аппаратов за последние два десятилетия. Важнейшими аспектами ее исследований были химический состав , вертикальная структура и динамика воздушной среды. Большое внимание отводилось облачному покрову, играющему роль непреодолимого барьера для проникновения в глубь атмосферы электромагнитных волн оптического диапазона. При телевизионной съемке Венеры удавалось получить изображение только облачного покрова . Непонятными были необычайная сухость воздушной среды и ее феноменальный парниковый эффект , за счет которого фактическая температура поверхности и нижний слоев тропосферы оказалась более чем на 500 выше эффективной (равновесной). Состав атмосферы. Впервые химический состав атмосферы прямыми методами был осуществлен советскими аппаратами «Венера-4, -5 и -6». Он оказался таким: СО -97, N - 2, О - 0,1, Н О - 0,05%. Последующие полеты космических аппаратов подтвердили приведенные данные с небольшими коррективами. Крайне незначительное содержание водяного пара в атмосфере , а в ней сосредоточена вся планетная масса гидросферы внешней области Венеры, представляет собой на сегодняшний день загадку. Атмосферы планет земной группы формировались за счет выхода из недр вулканических газов при дифференциации вещества в стадию его расплавления. Основную часть вулканических газов составляют водяной пар и углекислый газ, находящиеся между собой в объемном соотношении 5 : 1 (Маров, 1976). Свободные азот, кислород, водород в состав вулканических газов не входят , а представляют собой продукты последующих реакций. По оценкам, общее количество углекислого газа на Венере и Земле приблизительно одинаковое. Только на Земле он связан в осадочных породах и отчасти поглощен водными массами океанов, на Венере же весь он сконцентрирован в атмосфере. Обилие углекислого газа в современной атмосфере Венеры в тысячи раз превышает общее его количество в земной атмосфере. В соответствии с приведенной пропорцией выделения водяного пара и углекислого газа при дифференциации планетного вещества Венера должна была бы иметь мощнейшую гидросферу, вполне сопоставимую с земной - с толщиной эквивалентного слоя воды на поверхности порядка 2,7 км. Приблизительно такого же колоссального масштаба должна была бы быть и гидросфера Венеры - планеты , по своим размерам и эволюции очень сходной с Землей. Куда же девались с Венеры огромные массы воды? Надежного ответа на поставленный вопрос пока нет. Вертикальная структура. В соответствии с температурным профилем (рис.1) атмосфера Венеры делится на две области: тропосферу, простирающуюся от поверхности планеты до приблизительно 100 км, и термосферу (Schubert and Covey, 1981). Тропосфера. Названа по аналогии с земной тропосферой по температурному вертикальному профилю. В венерианской тропосфере температура с высотой понижается. На поверхности температура равняется + 460 С, она мало меняется днем и ночью. К верхней границе тропосферы температура понижается до 180 К (- 93 С). Состав газов тропосферы в общем сохраняется по всему профилю, т.е. это в основном атмосфера из углекислого газа. В тропосфере на высотах между 45 -50 и 60- 65 км находится облачный покров , у него очень высокое альбедо : он отражает около 78% приходящей солнечной радиации. Только небольшая часть солнечной энергии проходит через облака и тропосферный воздух и достигает поверхности планеты. Несмотря на то что прямая солнечная радиация почти не достигает поверхности планеты , температура ее , а также нижних слоев тропосферы очень высока - до 460 С. Причиной является сильно выраженный парниковый эффект атмосферы. Облачный покров. Несмотря на неоднократное пересечение облачного покрова спускаемыми аппаратами космических станций , взятие проб воздуха на разной высоте и анализ их, четкого представления о составе облаков и их генезисе до сих пор нет. Ясно только одно, что если до космического века они признавались в основной своей массе состоящими из водяного пара, то в настоящее время такая точка зрения признается ошибочной. По степени поляризации облака состоят скорее всего из капелек серной кислоты с примесью воды (Schubert and Covey, 1981). М.Я.Маров (1976) облачный покров Венеры определяет как скопление капелек концентрированного ( 75-80%) водного раствора серной кислоты, возможно, с примесью плавиковой и соляной кислот. Серная кислота находится в переходном состоянии из жидкой фазы в твердую. Содержание водяного пара в облачном покрове не более 10 - 10 от общей смеси газов. По вертикали облачный покров делится на три слоя: верхний, простирающийся между высотами 65 и 78 км (Ксанфомалити, 1976), средний, основной слой плотных облаков - от 50 до 65 км и нижний , находящийся под основным слоем и представляющий собой дымку, аналогичную верхнему слою. Основной облачный слой , обладающий стабильностью и высокой плотностью, непрозрачен для световых лучей . 78% солнечной радиации отражается его верхней поверхностью, и именно ее полосчатое строение наблюдается в наземных телескопах и на телевизионных снимках. Светлые полосы это - это поверхность густых облаков, а темные - разрывы между ними, через которые в ультрафиолетовых лучах виден неосвещенный нижний слой облачного покрова. При среднем значении температурного градиента в тропосфере 7,3 /км ( у земной тропосферы он 5,6 /км) температура воздуха понижается с высотой приблизительно +470 С у поверхности планеты до -35 С у верхней поверхности основного облачного слоя (Ксанфомалити, 1976). Это означает ,что в верхней части облачного слоя вода может находиться ( при давлении 0,11 кг/см ) только в твердой фазе - в виде кристаллов льда. Используя указанное значение температурного градиента, легко получить температуру нижней поверхности основного облачного слоя на высоте 50 км. Она будет + 75 С. Приблизительно на 2 - 3 км ниже того уровня, уже в пределах нижнего разреженного облачного слоя, температура повышается до + 100 С. Это предел нахождения воды в жидкой фазе. Следовательно, ниже 47-48 км вода может находиться в тропосфере только в газообразном состоянии - в виде пара. Таким образом, поверхность Венеры нигде не соприкасается с водой в ее наиболее активной фазе - в жидком состоянии. Круговорот воды на Венере, характеризующийся крайней незначительностью участвующей в нем воды, могущей переходить из одной фазы в другие, ограничивается интервалами высот в тропосфере от 47 до приблизительно 65 км. Атмосферные осадки на Венере в виде дождя , снега, града отсутствуют вследствие очень напряженного температурного поля внешней области планеты. Из сказанного следует, что круговорот воды на Венере не возбуждает обычных для Земли природных процессов - флювиальных, гляциальных и других. Вода в парообразном состоянии обусловливает химическое выветривание горных пород. Однако и этот процесс малоактивен. Термосфера. Над тропосферой находится разреженная верхняя атмосфера. Днем она нагревается от прямой радиации в ультрафиолетовом диапазоне волн, а потому ее температура с высотой повышается (рис. 1). Таким образом, по вертикальному изменению температуры термосфера Венеры аналогична земной термосфере. Но вместе с тем имеются и различия. На Земле эта сфера существует непрерывно - день и ночь, а на Венере - только днем, ночью она исчезает. Повышенный нагрев воздуха в дневное время заменяется его сильным охлаждением ночью, в связи с чем воздушная среда верхней атмосферы приобретает свойство криосферы (Schubert and Covey, 1981). В верхней атмосфере преобладание СО сохраняется до высоты 200 км. На высотах 250-300 км его заменяет атмосферный кислород (О) и окись углерода, а выше 500-700 км атмосфера становится чисто водородной, которая постепенно переходит в межпланетную среду. Температурный минимум в атмосфере приурочен к высотам 100-110 км, т.е. к основанию термосферы. Его значение выражается 160-180 К (от -113 до -93 С). Подъем температуры воздуха выше этого уровня связан с поглощением коротковолновой солнечной радиации (Маров, 1976). Циркуляция атмосферы. Под влиянием солнечной радиации происходит неравномерных нагрев планетной атмосферы. Тепловой баланс атмосферы в экваториальной зоне бывает положительным, т.е. приход тепла больше излучения его в инфракрасном диапазоне волн в космос. Однако избыток тепла не накапливается в экваториальной зоне, а передается полярным областям, у которых тепловой баланс отрицательный. Происходит некоторое сглаживание температурных различий областей: одной - с положительным тепловым балансом, другой - с отрицательным. Этот процесс конвективной передачи тепла от экватора к полюсам свойственен и Земле, но вследствие мощного широтного перемещения воздушных масс с востока на запад он оказывается недостаточно выраженным. В венерианской атмосфере горизонтальные различия температур намного меньше , чем вертикальные. Наибольшие широтные различия , установленные «Пионер-Венус - 1», относятся к верхнему уровню облаков. Разница в температурах по этому уровню (65 км от поверхности) между полюсами и 60-й параллелью составляет 10- 20 , а наиболее высокие ее приурочены к экваториальной зоне, как и у других планет. Наибольшее количество энергии поглощается в интервале высот 70-100 км; температура на этом уровне на полюсе выше, чем в экваториальной зоне. Впрочем , аналогичное явление характерно и для Земли. В земной атмосфере в пределах стратосферы и мезосферы полярная область теплее, чем экваториальная. В венерианской тропосфере температурные вариации по широте значительно больше, чем по долготе. По долготе на расстоянии 110 (больше 1/4 окружности) изменение температуры составляет не более 5 . В нижней тропосфере (10-20) км различия еще меньше , она так массивна , что сохраняет высокие температуры даже в течение продолжительного периода очень длинной (117 земных суток) венерианской ночи (Schubert and Covey, 1981). Температура на ночной стороне Венеры лишь на 20 ниже, чем на дневной. Хотя горизонтальные температурные различия в венерианской тропосфере малы, тем не менее они могут возбуждать силы атмосферной циркуляции. Особенно большое значение имеют широтные градиенты температуры (между дневной и ночной сторонами планеты). В соответствии с вращением Венеры с востока на запад в том же направлении (с востока на запад) происходит вращение атмосферы. Скорость вращения тропосферы как по вертикали, так и в горизонтальном направлении изменяется. Если на экваторе у поверхности Венеры восточные ветры не превышают скорость 1-2 м/сек, то на уровне верхней поверхности основного облачного слоя , т.е. на высоте 65 км, скорость восточного переноса воздушных масс возрастает до 100 м/сек ( 360 км/час). Вращаясь с высокой скоростью (в экваториальной зоне), облачный покров за четверо земных суток делает оборот вокруг Венеры, совершающей свой оборот вокруг оси за 243 суток , т.е. вращается в 60 раз медленнее, чем верхняя поверхность основного облачного слоя. На высотах от 40 до 60 км движение воздушных масс с востока на запад происходит со скоростью 60 м/сек. У поверхности планеты ветра практически нет (скорость его 1-2 м/сек), и она окутана плотным горячим сухим воздухом (470 С). Наличие облачного покрова свидетельствует о восходящих потоках воздуха. Вследствие медленного вращения силы Кориолиса на Венере очень малы. Климат. Погода. Применительно к Венере , конечно, несколько упрощая суть дела, можно сказать, что климат и погода на этой планете одно и то же. Действительно, если под погодой понимать «непрерывно меняющееся состояние атмосферы... или последовательное изменение значений всех метеорологических элементов...» (Хромов, Мамонтова, 1974, с.348) , то на Венере эти условия практически неизменны в течение и суток и года. При почти перпендикулярном положении оси вращения Венеры к орбитальной плоскости ( наклон 3 ) колебания значений метеорологических элементов остаются в течение суток ( их продолжительность 234 земных суток) почти неизменными. Колебания температуры у поверхности не превышают 5-15 С. Экзогенные процессы Отсутствие на Венере воды и крайне малая скорость ветра у поверхности планеты не способствуют развитию ни флювиальных . эоловых процессов. Обнаружение «Венерой-8» подобия коры выветривания на горных породах, богатых радиоактивными элементами, свидетельствует о действии процесса химического выветривания, хотя на поверхности планеты, как отмечалось, нет ни капли жидкой воды. При очень высокой температуре поверхности, близкой к точке плавления цинка и свинца, вероятно, протекают процессы непосредственного взаимодействия горной породы с находящимся в воздухе водяным паром. Вследствие необычайной сухости воздуха нижних слоев атмосферы едва ли процесс химического выветривания может идти активно. При господстве устойчивых температурных условий на поверхности планеты термическое выветривание также протекает очень вяло. Как показали панорамы поверхности Венеры, выполненные спускаемыми аппаратами «Венера-9-14», местами имеются крутые склоны с каменными осыпями. Следовательно, в определенных условиях рельефа гравитационные процессы могут протекать активно. Рельеф и недра В отличие от Луны и Меркурия, где отсутствие атмосферы или ее большая прозрачность (Марс) позволяют вести орбитальным спутникам детальную телевизионную съемку, густой облачный покров Венеры, практически поглощающий всю солнечную радиацию оптического диапазона волн, исключает возможность получения фото- и телевизионных снимков поверхности планеты. Но облачный покров пропускает радиоволны, вследствие чего имеется возможность радарной съемки поверхности Венеры путем использования наземных высокочувствительных радиотелескопов. И еще один способ изучения поверхности - это посылка на нее специальных аппаратов-лабораторий, снабженных телекамерами. В последнее десятилетие было послано много таких аппаратов, о строении поверхности Венеры получены конкретные данные. На поверхности Венеры обнаружена порода, богатая калием, ураном и торием, что в земных условиях соответствует составу не первичных вулканических пород, а вторичных, прошедших экзогенную переработку. В других местах на поверхности залегает крупнощебенчатый и глыбовый материал темных пород с плотностью 2,7- 2,9 г/см и другие элементы, характерные для базальтов . Таким образом , поверхностные породы Венеры оказались такими же, как на Луне, Меркурии и Марсе, излившимися магматическими породами основного состава. Спускаемый аппарат «Венеры-9» сел на склон крутизной 30 , и слагающие склон обломки пород были угловатыми, часто с острыми ребрами, среди них находилось небольшое количество мелкозема. В целом на Венере наиболее распространена скалистая поверхность без мелкозема или с его небольшим количеством. Однако ни песка, ни пыли, как на Марсе , ни порошкообразного вещества с включением каменных обломков, т.е. лунного реголита, в местах посадки спускаемых аппаратов не оказалось. Но обнаружено другое - наличие маломощных плотных слоистых пород. Их образование связывается с осаждением из атмосферы вулканического пепла и метеоритной пыли. Проведенные космическими аппаратами аналитические исследования подтвердили магматическое происхождение коренных пород и их основной состав. Цветное фотографирование мест посадки спусковых аппаратов позволило с большей детальностью охарактеризовать горные породы. Последние радарные исследования, осуществленные в Посадене (Калифорния, США) в 1974-1975 гг., позволили получить много данных о макрорельефе венерианской поверхности. К числу наиболее интересных сведений следует отнести обнаруженные вблизи экватора линейного трога протяженностью 1500 км, шириной 150 км и глубиной 2 км, ориентированного с СВ на ЮЗ. По своей морфологии он напоминает Восточно-Африканскую систему рифтов и гигантский грабен , то же в экваториальной зоне Марса. Анализ радиолокационной карты Венеры выявил широкое распространение на ней рифтовых зон. Дж. Шабер (Рифтовые зоны на Венере, 1983) выделил в пределах тропических широт планеты три крупные зоны тектонических нарушений, протягивающихся на многие тысячи километров . Главная из них проходит в субширотном направлении от земли Афродиты к вулканическому поднятию Бета. Рифтовые структуры в ней располагаются вдоль южных подножий поднятий Овды и Фетиды. Длина зоны 21 тыс.км. Другая зона аналогичной структуры (длиной 14 тыс.км) прослеживается от области Фетиды до северо-западного окончания области Атлы. Третья зона (длиной 6 тыс.км) протягивается в меридиональном направлении от области Бета до области Фебы. Основную часть поверхности Венеры занимают холмистые равнины. Крупные возвышенности (высотой до 10 км) в совокупности занимают пространство с Австралию. Многие возвышенности имеют в плане овальную форму и являются , вероятно, щитовыми вулканами. Один из них напоминает марсианский вулканический гигант Олимп. Поперечник его от 300 до 400 км , но высота всего 1 км. В центре лавового щита находится кальдеровидная депрессия диаметром 80 км. По-видимому , вулканические формы вообще широко распространены на поверхности Венеры. На радиолокационной карте Венеры видно обилие кратеров, похожих на лунные. Особенно их много в экваториальном поясе. Крупные кратеры имеют поперечники в десятки километров и даже достигают 150 км. Характерно, что все кратеры более плоские , чем лунные, даже наиболее крупные из них не глубже 400 м. Американский ученый Р.Гольдштейн исследовал экваториальную область поперечником в 1500 км. На этой площади он обнаружил свыше 10 кратеров диаметром от 35 до 150 км. В отличие от лунных и марсианских кратеров, достигающих глубины 3-5 % диаметра, венерианские кратеры не превышают 0,3 % диаметра. Вообще поверхность Венеры по сравнению с другими планетами оказалась более сглаженной. Наряду с кратерами обычных размеров с поперечником в десятки километров ( реже в 100 км) на Венере имеются и гигантские овальные впадины -депрессии, подобные Морю Дождей на Луне, диаметром до 1 тыс. км. Одна из них находится в северном полушарии. На Венере обнаружено много крупных тектонических структур, подобных марсианским и земным. В приэкваториальной области простирается обширная возвышенность Бета, по-видимому, огромный вулкан щитового типа, сложенный базальтами. К югу от массива Бета находится другая крупная возвышенность - Феба. На цветных панорамных снимках ее восточной оконечности грунт имеет необычные желто-коричневые оттенки. Но эта окраска - результат проявления поглощающих особенностей венерианской атмосферы, которая пропускает к поверхности планеты только волны солнечной радиации желтого и коричневого диапазонов, а голубой спектр поглощает. Весь регион Бета- Феба геологи относят к вулканическим провинциям, притом молодого возраста, поскольку они имеют свежую поверхность, еще не затронутую процессом химического выветривания. (Ксанфомалити, 1982). Достоверных данных о внутреннем строении Венеры пока нет. Но ее большая вулканическая активность в течение всей истории очевидна. В работе Э. И Л. Янг (1978) приводится теоретически обоснованный разрез планеты, из которого ясно , что внутреннее строение Венеры похоже на земное. Предполагается, что планета имеет жидкое ядро, мантию и кору из горных пород. Размеры ядра , так же как толщина мантии и коры , неизвестны. Американские ученые Р.Ю.Филлипс , И.М.Каула и др. (Phillips,1981) считают, что тектоника и эволюция Венеры и Земли разные. У Венеры в отличие от Земли преобладают преимущественно сглаженные формы рельефа, отсутствуют такие морфоструктуры, как срединно-океанические хребты; для нее характерны прямая корреляционная зависимость между гравитационными аномалиями и топографией,. А также расположение компенсационных масс под поднятыми участками на глубинах приблизительно 100 км. Кора Венеры имеет очень древний возраст . а общая высокая температура у ее поверхности исключает возможность проявления субдукции ( погружения океанической коры под материковые области). Магнитное поле. Исследованиями установлено. Что собственного магнитного биполярного планетного поля у Венеры не обнаружено ( «Правда», 23.1.1976). Но слабое магнитное поле, связанное, вероятно, с намагниченностью приповерхностных толщ горных пород , имеется. Оно фиксируется в зоне его взаимодействия с солнечным ветром - ударной волной мощностью 10-20 км. Напряженность магнитного поля поверхности Венеры оценивается в 18 гамм, т.е. в 2-3 тыс. Раз слабее, чем у поля Земли (Почтарев, 1978). Такое очень слабое магнитное поле может лишь в небольшой степени ослаблять воздействие мощного плазменного потока солнечного ветра на поверхность Венеры. Природная обстановка Попав на Венеру, мы окажемся в совершенно особой, не только нам привычной , но гибельной для всего живого природной обстановке. Это прежде всего высокая температура. Затем необычайная сухость поверхности и нижней атмосферы и , наконец, ее состав - 97 % СЩ . Человек, оказавшийся на Венере, найдет для себя привычные землянам условия давления и температуры только на одном высотном уровне - в тропосфере, в 55 километрах от поверхности планеты. Но и здесь состав воздуха другой - основным компонентом его будет углекислый газ. Крупные тектонические поднятия, огромные вулканы и другие формы рельефа, в том числе и древнего, свидетельствуют прежде всего о слабой активности экзогенных процессов. И это понятно, ведь на поверхности Венеры отсутствует жидкая вода. С которой связано функционирование обширного комплекса экзогенных процессов. Вода в жидкой, а также в твердой и газообразной фазах способствует развитию мощного климатического круговорота, оказывающего определяющее воздействие не только на активность экзогенных процессов, но и на весь процесс эволюции внешней области планеты. Планета Венера по массе, размеру, рифтообразованию и другим параметрам напоминает Землю. Но отсутствие у нее жидкой воды и связанных с нею активных процессов - причины большой консервативности ее поверхности. Она, как Луна и Меркурий, мало подвержена изменению экзогенными процессами. Даже Марс, приблизительно в 8 раз уступающий Венере по массе, достиг более высокого уровня эволюции внешней области. Это произошло за счет большой подвижности очень разреженной атмосферы и участия в прошлом небольшого количества жидкой воды в климатическом круговороте планеты. Литература: А.Е.Криволуцкий - «Голубая планета» А.А.Гурштейн - «Извечные тайны неба»

works.tarefer.ru

Реферат на тему Планета Венера

РЕФЕРАТ

на тему:

«Планета Венера»

Венера - друга по відстані від Сонця і найближча до Землі планетаСонячної системи. Середня відстань від Сонця 108 млн. км. Періодобертання довкола нього - 225 доби. Під час нижніх з'єднань моженаближатися до Землі до 40 млн. км, тобто ближче будь-якої іншої великоїпланети Сонячної системи. Синодичний період (від одного нижньогоз'єднання до іншого) дорівнює 584 добі. Найкращі умови видимості Венерина періоди елонгацій, хоча кутова відстань Венери від Сонця не перевищує48%, внаслідок чого її видно або після заходу Сонця (вечірня зірка), абонезадовго до його сходу (ранкова зірка). Венера - саме яскраве світилона небі, після Сонця і Місяця.

Діаметр Венери - 12100 км (95% діаметра Землі), маса 81,5% маси Землі,тобто 4,9(10 24 кг, чи 1/408400 маси Сонця, середня щільність - 5,2 г/см3, прискорення сили ваги на поверхні - 8,6 м/с 2 (90% земного). Періодобертання Венери довго не вдавалося визначити через щільну атмосферу іхмарний шар, що огортають планету. Тільки за допомогою радіолокації буловстановлено, що він дорівнює 243,2 добі, причому Венера обертається взворотну сторону в порівнянні з Землею й іншими планетами. Нахил осіобертання Венери до площини її орбіти дорівнюють майже 90о, тобтопівнічна і південна півкулі завжди висвітлюються Сонцем однаково.

Венера - найближча сусідка. Її розміри, маса і щільність порід близькідо земного. Разом з тим її магнітне поле майже в три рази слабкіше, ніжна Землі. Венера дуже повільно обертається навколо своєї осі. Тиск на їїповерхні досягає 10 млн. Па, а температура +500(С. На висоті 49 км надпланетою простирається могутній шар хмар. Цим не вичерпуються відомостіпро Венери. Залишалися неясними до останнього часу також причини різкогозбідніння її атмосфери водою, механізм ураганних вітрів на висотахблизько 60 км, будова її рельєфу, склад порід, що складають, і т.д. Навідміну від інших планет земної групи, вивчення Венери за допомогоютелескопів виявилося неможливим. Ще Ломоносов, спостерігаючи 6 червня1761 року проходження планети по диску Сонця, встановив, що вона оточена«повітряною атмосферою». Тому до останнього часу представлення пробудову поверхні і склад гірських порід на Венері залишалисягіпотетичними. При цьому деякі дослідники приходили до фантастичнихпобудов. Передбачалося, наприклад, що в атмосфері Венери можутьутворюватися вуглеводні. У цьому випадку, на думку американськогоученого Ф. Кайла, Венера повинна бути покрита океаном нафти. В іншомуваріанті допускалося, що в атмосфері можуть створюватися складнімолекули, близькі до тих пластмасам, що одержують у заводських умовах, аповерхня планети вистелена шаром природного пластику. На думкуамериканського дослідника Е. Епіка, для Венери характерні сильні пиловібури, нижні шари атмосфери насичені пилом, що сприяє підтримці високихтемператур. У цьому випадку поверхня також повинна бути покрита шаромпилу, подібно тому, як це передбачалося «пиловою гіпотезою» Т. Голда дляМісяця.

ця.

У 1961 році був зроблений запуск першого космічного апарата убікВенери. Станція «Венера-1» пройшла на відстані менше 100 000 км відпланети. «Венера - 2», що стартувала в 1965 році наблизилася до планетина відстань 24 000 км. 1 березня 1966 року «Венера - 3» успішно досяглаповерхности планети. Станція «Венера - 4» зробила міжпланетну подорож у1967 році. Її апарат, що спускається, плавно занурився в атмосферуВенери за допомогою парашута. Були зроблені виміри температури, тиску іскладу атмосфери. У 1969 році до Венери були відправлені станції «Венера- 5» і «Венера - 6». Їхні апарати, що спускаються, провели зондуванняатмосфери до висоти 20 км над твердою поверхнею. У 1970 році апаратстанції, що спускається, «Венера - 7» здійснив м'яку посадку на планету.Протягом 23 хвилин після посадки з його надходили сигнали з інформацієюпро роботу приладів. У 1972 році на поверхню планети здійснив посадкуапарат станції, що спускається, «Венера - 8», з якого протягом 50 хвилиннадходила інформація. Видатними досягненнями у вивченні Венериознаменувався 1975 рік. Дві станції «Венера - 9» і «Венера - 10» булививедені на орбіти штучних супутників цієї планети. З їхніх апаратів, щоспускаються, протягом 53 і 65 хвилин надходили панорамні телевізійнізображення місцевості й інша наукова інформація.

У 1978 році вивчення Венери було продовжено станціями «Венера - 11» і«Венера - 12», що досягли поверхні південніше області Бета. Нарешті в1982 році станція «Венера - 13» і станція «Венера - 14», зробившипосадку на поверхні планети, дозволили зробити цілий комплекс науковихдосліджень.

В даний час можна уже виразно говорити про склад венеріанськоїатмосфери. Як і передбачалося раніш, вона складається з вуглекислогогазу - 97%. Крім нього в кількості 2% є присутнім азот, а також більш0,1% кисню, водяної пари і частка відсотків приходиться на інертні гази(головним чином аргон).

Наявність величезної кількості вуглекислого газу в атмосфері Венеризв'язано в основному з вулканічною діяльністю. І на Землі при виверженнівулканів в атмосферу викидається вуглекислий газ. Періодичні зміниклімату на Землі, що приводили до заледенінь, деякі вчені зв'язують самез коливанням кількості вуглекислого газу в атмосфері Землі. На Венерівуглекисла атмосфера створює своєрідний «парниковий ефект», непропускаючи в космічний простір теплове випромінювання планети. Можливо,цим порозуміваються високі температури в поверхні планети, що досягають470(С. Особливий інтерес викликають хмари Венери, що цілком ховають їїповерхню від спостережень із Землі. Вони знаходяться на висоті 49 км ідосягають товщини 20 км. За даними радянських дослідників, щоаналізувала дані, отримані станціями «Венера» і «Піонер - Венера», хмаримають шарувату будівлю. Верхня частина хмар, очевидно, складається зкрапельок сірчаної кислоти, а в середній і нижній частинах переважаютьсолі соляної кислоти у виді кристалічних часток.

Відзначається складна динаміка атмосфери і руху хмар. Очевидно, існують

існуютьполярні вихри і просто сильні вітри, найбільш інтенсивні на висотахбільш 40 км. У поверхні планети вітри слабкі. Цим порозумівається івідсутність пилу в місцях посадок апаратів станцій, що спускаються,«Венера».

Через розвиток могутньої атмосфери єдиним надійним засобомдистанційного вивчення поверхні залишається зондування. За допомогоюназемних радіотелескопів були вивчені приекваторіальна смуга й окреміділянки діаметром 1500 км. Експерименти по радіокартуванню Венери буливиконані зі станцій «Венера - 9» і «Венера - 10». Відбиті від поверхніВенери сигнали приймалися земними радіотелескопами. При цьому буловстановлено кілька протяжних уступів у південній півкулі, витягнутих уширотному напрямку на кілька сотень кілометрів при висоті до 3 км.

Радіолокаційна зйомка Венери була здійснена з американського супутника«Піонер - Венера». Дозвіл цих радіо зображень порядку 30 - 50 км. Заданими радіолокаційного зондування, виконаного із супутника, складенакарта, що охоплює 83% поверхні планети, між 75о пн. ш. і 63о пд.ш.

Дані про рельєф Венери дозволяють виділити на її поверхні низовини, щопредставляють собою западини, горбкуваті рівнини і гірські масиви.Низовини, розташовані нижче середнього рівня планети (6051 км) на 1 -2,5 км, займають 16% її поверхні. Вони утворять дві широкі дугоподібнісмуги западин, розташовані по обох сторони екватора і дотичні своїмиопуклими частинами майже по нульовому меридіані. Вони мають згладженийрельєф і слабко насичені кільцевими структурами імпактного походження,що вказує на відносну молодість рельєфу.

Горбкуваті рівнини займають 60% поверхні. Їхній гіпсометричний рівеньне перевищує 500 м від середнього рівня планети. Вони відрізняютьсяоднорідною відбивною здатністю в радіодіапазоні. Основними формамирельєфу є гряди, пагорби і западини. Поверхня рівнин ускладнена великимчислом кратерів, діаметри яких досягають 400 - 600 км, а глибина 200 -700 м. Відносно мала глибина разом зі слідами руйнування свідчить проїхню стародавність. Чітко виражені великі кратери одержали найменуванняЛіза Мейтнер, Сапоро й Єва. Численні дрібні кратери діаметром 150 - 200км, і глибиною в сотню - два метри. Наявність на поверхні горбкуватихрівнин великого числа сильно зруйнованих древніх кратерів дає підставизіставляти їх із древніми континентальними областями Місяця і Марса. Умежах континентальних рівнин практично немає великих щитових вулканів.Виключенням може бути гора Хатор, однак її вулканічна природа ще строгоне встановлена. Підняті над основною поверхнею райони охоплюють 24%поверхні, утворити чотири ізольованих гірських країни: Земля Іштар,Земля Афродіти й області Бета й Альфа.

Судити про тектонічну природу піднесених областей Венери випливає зурахуванням молодості і значної розчленованості розвитого в їхній межахрельєфу, відсутність древніх великих зруйнованих кратерів імпактногопоходження, приуроченості до них усіх найбільш великих щитових вулканів,явного зв'язку з рифтогенними структурами. Усе це дає повну підставу для

ми. Усе це дає повну підставу длязіставлення піднесених областей Венери з тектовулканічними підняттямиФарсіда і Елізій на Марсі. У центральній частині просліджується цілийряд тріщин, що утворять рифтову систему, що має, можливо, глобальнийхарактер. У плані рифтова система за даними Нікішина нагадує величезнийтрикутник, орієнтований зі сходу на захід, підставу якого розташованопівденніше підняття Бета. У широтному напрямку рифтова система Венерипротягається уздовж підняття Афродіти на відстань понад 20 000 км.

Незважаючи на розвиток рифтової системи можна припустити, що в цілому впорівнянні з Землею і Марсом кількість розривних порушень на Венері можебути менше. Через повільне обертання планети і малих значень силКориоліса на ній, очевидно, не так інтенсивно розвита системапланетарної тріщинуватості. Про основні етапи тектонічної еволюції можнасудити виходячи з особливостей структури поверхні Венери з урахуваннямданих порівняльної планетології. Спочатку виникла древня кораконтинентального типу, що випробувала інтенсивне метеоритнебомбардування. За аналогією з Місяцем, цей процес завершився приблизнона рубежі 4 млрд. років. Пізніше утворилися западини, виконанібазальтами так само, як і на інших планетах земної групи. Найбільшмолодими тектонічними елементами є тектоно-вулканічні підняття,увінчані, як і на Марсі, гігантськими щитовими вулканами. СупутниківВенера не має.

PAGE

PAGE 7

alive-inter.net