Оптическая система человеческого глаза. Преломление лучей в глазном яблоке осуществляется с помощью


Движение света в глазе | Кинезиолог

Структура человеческого глаза

Человеческий глаз - замечательное достижение эволюции и отличный оптический инструмент. Порог чувствительности глаза близок к теоретическому пределу, обусловленному квантовыми свойствами света, в частности дифракцией света. Диапазон воспринимаемых глазом интенсивностей составляет , фокус может быстро перемещаться от очень короткого расстояния до бесконечности.  Глаз является системой линз, которая формирует перевернутое действительное изображение на светочувствительной поверхности. Глазное яблоко имеет приблизительно сферическую форму с диаметром около 2,3см. Внешняя его оболочка является почти волокнистым непрозрачным слоем, называемым склерой. Свет поступает в глаз через роговицу, представляющую собой прозрачную оболочку на внешней стороне поверхности глазного яблока. В центре роговицы расположено цветное кольцо – радужкой (радужная оболочка) со зрачком посредине. Они действуют подобно диафрагме, осуществляя регуляцию поступления света в глаз.  Хрусталик представляет собой линзу, состоящую из волокнистого прозрачного материала. Его форма и, следовательно, фокусное расстояние могут изменяться с помощью цилиарных мышц глазного яблока. Пространство между роговицей и линзой заполнено водянистой жидкостью и называется передней камерой. За линзой расположено прозрачное желеобразное вещество, называемое стекловидным телом.  Внутренняя поверхность глазного яблока покрыта сетчаткой, которая содержит многочисленные нервные клетки - зрительные рецепторы: палочки и колбочки, которые отвечают на зрительные раздражения, генерируя биопотенциалы. Наиболее чувствительной областью сетчатки является желтое пятно, где содержится наибольшее число зрительных рецепторов. Центральная часть сетчатки содержит только плотно упакованные колбочки. Глаз вращается, чтобы рассмотреть изучаемый объект.

 

Рис. 1. Глаз человека

Преломление в глазе

Глаз является оптическим эквивалентом обычной фотографической камеры. В нем есть система линз, апертурная система (зрачок) и сетчатка, на которой фиксируется изображение.

Система линз глаза сформирована из четырех преломляющих сред: роговицы, водяной камеры, хрусталика, стеклянного тела. Показатели их преломления не имеют значительных отличий. Они составляют 1,38 для роговицы, 1,33 для водяной камеры, 1,40 для хрусталика и 1,34 для стекловидного тела (рис. 2).

Рис. 2. Глаз как система преломляющих сред (числа являются показателями преломления)

В этих четырех преломляющих поверхностях происходит преломление света: 1) между воздухом и передней поверхностью роговицы; 2) между задней поверхностью роговицы и водяной камерой; 3) между водяным камерой и передней поверхностью хрусталика; 4) между задней поверхностью хрусталика и стекловидным телом.  Наиболее сильное преломление происходит на передней поверхности роговицы. Роговица имеет небольшой радиус кривизны, и показатель преломления роговицы в наибольшей степени отличается от показателя преломления воздуха.  Преломляющая способность хрусталика меньше, чем у роговицы. Она составляет около одной трети общей преломляющей мощности систем линз глаза. Причина этого различия в том, что жидкости, окружающие хрусталик, имеют показатели преломления, которые существенно не отличаются от показателя преломления хрусталика. Если хрусталик удалить из глаза, окруженный воздухом он имеет показатель преломления почти в шесть раз больший, чем в глазе. Хрусталик выполняет очень важную функцию. Его кривизна может изменяться, что обеспечивает тонкое фокусирование на объекты, расположенные на различных расстояниях от глаза.

Редуцированный глаз

Редуцированный глаз является упрощенной моделью реального глаза. Он схематически представляет оптическую систему нормального глаза человека. Редуцированный глаз представлен единственной линзой (одной преломляющей средой). В редуцированном глазе все преломляющие поверхности реального глаза суммируются алгебраически, формируя единственную преломляющую поверхность.  Редуцированный глаз позволяет провести простые вычисления. Общая преломляющая способность сред составляет почти 59 диоптрий, когда линза аккомодирована на зрение отдаленных объектов. Центральная точка редуцированного глаза лежит впереди сетчатки на 17 миллиметров. Луч из любой точки объекта приходит в редуцированный глаз и проходит через центральную точку без преломления. Так же, как стеклянная линза формирует изображение на листе бумаги, система линз глаза образует изображение на сетчатке. Это уменьшенное, действительное, перевернутое изображение объекта. Головной мозг формирует восприятие объекта в прямом положении и в реальном размере.

Аккомодация

Для ясного видения объекта необходимо, чтобы после преломления лучей, изображение формировалось на сетчатке. Изменение преломляющей силы глаза для фокусировки близких и отдаленных объектов называется аккомодацией.  Наиболее отдаленная точка, на которую фокусируется глаз, называется дальней точкой видения - бесконечность. В этом случае параллельные лучи, входящие в глаз, фокусируются на сетчатку.  Объект виден в деталях, когда он установлен как можно ближе к глазу. Минимальное расстояние четкого видения – около 7 см при нормальном зрении. В этом случае аппарат аккомодации находится в максимально напряжённом состоянии.  Точка, расположенная на расстоянии 25см, называется точкой наилучшего видения, поскольку в данном случае различимы все детали рассматриваемого объекта без максимального напряжения аппарата аккомодации, вследствие чего глаз может длительное время не утомляться.  Если глаз сфокусирован на объект в ближней точке, он должен отрегулировать свое фокусное расстояние и увеличить преломляющую силу. Этот процесс происходит путем изменений формы хрусталика. Когда объект подносят ближе к глазу, форма хрусталика изменяется от формы умеренно выпуклой линзы в форму выпуклой линзы.  Хрусталик образован волокнистым желеобразным веществом. Он окружен прочной гибкой капсулой и имеет специальные связки, идущие от края линзы к внешней поверхности глазного яблока. Эти связки постоянно напряжены. Форма хрусталика изменяется цилиарной мышцей. Сокращение этой мышцы уменьшает натяжение капсулы хрусталика, он становится более выпуклым и из-за естественной эластичности капсулы принимает сферическую форму. И наоборот, когда цилиарная мышца полностью расслаблена, преломляющая сила линзы наиболее слабая. С другой стороны, когда цилиарная мышца находится в максимально сокращенном состоянии, преломляющая сила линзы становится наибольшей. Этот процесс управляется центральной нервной системой.

 

Рис. 3. Аккомодация в нормальном глазе

Старческая дальнозоркость

Преломляющая сила хрусталика может увеличиваться от 20 диоптрий до 34 диоптрий у детей. Средняя аккомодация составляет 14 диоптрий. В результате общая преломляющая сила глаза составляет почти 59 диоптрий, когда глаз аккомодирован для дальнего зрения, и 73 диоптрия - при максимальной аккомодации.  При старении человека хрусталик становиться более толстым и менее эластичным. Следовательно, способность линзы изменять свою форму уменьшается с возрастом. Сила аккомодации уменьшается от 14 диоптрий у ребенка до менее 2 диоптрий в возрасте от 45 до 50 лет и становится равной 0 в возрасте 70 лет. Поэтому линза почти не аккомодируется. Это нарушение аккомодации называется старческой дальнозоркостью. Глаза при этом сфокусированы всегда на постоянном расстоянии. Они не могут аккомодироваться как для ближнего, так и дальнего зрения. Следовательно, чтобы видеть ясно на различных расстояниях, старый человек должен носить бифокальные очки с верхним сегментом, сфокусированным для дальнего видения, и более низким сегментом, сфокусированным для ближнего видения.

Ошибки преломления

Эмметропия. Считается, что глаз будет нормальным (эмметропичным), если параллельные световые лучи с отдаленных объектов фокусируются в сетчатку при полном расслаблении цилиарной мышцы. Такой глаз видит ясно отдаленные объекты, когда расслаблена цилиарная мышца, то есть без аккомодации. При фокусировании объектов ближнего диапазона расстояний в глазе сокращается цилиарная мышца, обеспечивая подходящую степень аккомодации.

Рис. 4. Преломление параллельных световых лучей в глазе человека.

Гиперметропия (гиперопия). Гиперметропия также известна как дальнозоркость. Она обусловлена либо малым размером глазного яблока, либо слабой преломляющей силой системы линз глаза. В таких условиях параллельные световые лучи не преломляются системой линз глаза достаточно для того, чтобы фокус (соответственно изображение) находился на сетчатке. Для преодоления этой аномалии цилиарная мышца должна сократиться, увеличив оптическую силу глаза. Следовательно, дальнозоркий человек способен фокусировать отдаленные объекты на сетчатке, используя механизм аккомодации. Для видения более близких объектов мощности аккомодации не хватает.При небольшом резерве аккомодации дальнозоркий человек часто не способный аккомодировать глаз достаточно для фокусирования не только близких, но даже отдаленных объектов.Для коррекции дальнозоркости необходимо увеличить преломляющую силу глаза. Для этого используют выпуклые линзы, которые добавляют преломляющую силу к силе оптической системе глаза. Миопия. При миопии (или близорукости) параллельные световые лучи с отдаленных объектов фокусируются перед сетчаткой, несмотря на то, что цилиарная мышца полностью расслаблена. Это бывает из-за слишком длинного глазного яблока, а также вследствие слишком высокой преломляющей силы оптической системы глаза.  Нет механизма, с помощью которого глаз мог бы уменьшить преломляющую силу своего хрусталика менее, чем возможно при полном расслаблении цилиарной мышцы. Процесс аккомодации приводит к ухудшению видения. Следовательно, человек с миопией не может фокусировать отдаленные объекты на сетчатку. Изображение может сфокусироваться только, если объект находится достаточно близко от глаза. Следовательно, у человека с миопией ограничена дальняя точка ясного видения.  Известно, что лучи, проходящие через вогнутую линзу, преломляются. Если преломляющая сила глаза слишком велика, как при миопии, иногда она может быть нейтрализована вогнутой линзой. Используя лазерную технику, можно также откорректировать слишком большую выпуклость роговицы. Астигматизм. В астигматическом глазе преломляющая поверхность роговицы является не сферической, а эллипсоидальной. Это происходит из-за слишком большой кривизны роговицы в одной из своих плоскостей. В результате световые лучи, проходящие через роговицу в одной плоскости, не преломляются так же сильно, как лучи, проходящие через нее в другой плоскости. Они не собираются в общем фокусе. Астигматизм не может компенсироваться глазом с помощью аккомодации, но корректировать его можно с помощью цилиндрической линзы, которая исправит ошибку в одной из плоскостей.

Коррекция оптических аномалий контактными линзами

Недавно для коррекции различных аномалий зрения стали использовать пластические контактные линзы. Они устанавливаются против передней поверхности роговицы и фиксируются тонким слоем слез, который заполняет пространство между контактной линзой и роговицей. Жесткие контактные линзы делают из жесткой пластмассы. Их размеры составляют 1мм в толщину и 1см в диаметре. Также существуют мягкие контактные линзы.  Контактные линзы заменяют роговицу как внешнюю сторону глаза и почти полностью аннулируют долю преломляющей способности глаза, которая происходит в норме на передней поверхности роговицы. При использовании контактных линз передняя поверхность роговицы не играет значимой роли в преломлении глаза. Основную роль начинает выполнять передняя поверхность контактной линзы. Особенно важно это у лиц с ненормально сформированной роговицей.  Другой особенностью контактных линз является то, что, поворачиваясь вместе с глазом, они дают более широкую область ясного видения, чем это делают обычные очки. Они являются также более удобными в использовании для художников, спортсменов и т.п.

Острота зрения

Способность человеческого глаза ясно видеть мелкие детали ограничена. Нормальный глаз может различать различные точечные источники света, расположенные на расстоянии 25 секунд дуги. То есть, когда световые лучи с двух отдельных точек попадают в глаз под углом более 25 секунд между ними, они видны в качестве двух точек. Лучи с меньшим угловым разделением не могут быть различены. Это означает, что человек с нормальной остротой зрения может различить две точки света на расстоянии 10 метров, если они друг от друга находятся на расстоянии 2 миллиметра.

Рис. 7. Максимальная острота зрения для двух точечных источников света.

Наличие этого предела предусмотрено структурой сетчатки. Средний диаметр рецепторов в сетчатке составляет почти 1,5 микрометров. Человек может нормально различить две отдельные точки, если в сетчатке расстояние между ними составляет 2 микрометра. Таким образом, чтобы различать два небольших объекта, они должны возбудить две разных колбочки. По крайней мере, между ними один будет находиться 1 невозбужденная колбочка.

Источники:

http://www.all-fizika.com/article/index.php?id_article=1982

kineziolog.su

Строение и свойства глаза

Следи за собой! Гимнастика для глаз Глаза и зрение

Глаз состоит из глазного яблока диаметром 22–24 мм, покрытого непрозрачной оболочкой, склерой, а спереди — прозрачной роговицей (или роговой оболочкой). Склера и роговица защищают глаз и служат для крепления глазо-двигательных мышц.

Радужная оболочка — тонкая сосудистая пластинка, ограничивающая проходящий пучок лучей. Свет проникает в глаз через зрачок. В зависимости от освещения диаметр зрачка может изменяться от 1 до 8 мм.

Хрусталик представляет собой эластичную линзу, которая крепится на мышцах ресничного тела. Ресничное тело обеспечивает изменение формы хрусталика. Хрусталик разделяет внутреннюю поверхность глаза на переднюю камеру, заполненную водянистой влагой, и заднюю камеру, заполненную стекловидным телом.

Внутренняя поверхность задней камеры покрыта светочувствительным слоем — сетчаткой. От сетчатки световой сигнал передается в мозг по зрительному нерву. Между сетчаткой и склерой находится сосудистая оболочка, состоящая из сети кровеносных сосудов, питающих глаз.

На сетчатке имеется желтое пятно — участок наиболее ясного видения. Линия, проходящая через центр желтого пятна и центр хрусталика, называется зрительной осью. Она отклонена от оптической оси глаза вверх на угол около 5 градусов. Диаметр желтого пятна — около 1 мм, а соответствующее ему поле зрения глаза — 6–8 градусов.

Сетчатка покрыта светочувствительными элементами: палочками и колбочками. Палочки более чувствительны к свету, но не различают цветов и служат для сумеречного зрения. Колбочки чувствительны к цветам, но менее чувствительны к свету и поэтому служат для дневного зрения. В области желтого пятна преобладают колбочки, а палочек мало; к периферии сетчатки, наоборот, число колбочек быстро уменьшается, и остаются только палочки.

В середине желтого пятна находится центральная ямка. Дно ямки выстлано только колбочками. Диаметр центральной ямки — 0,4 мм, поле зрения — 1 градус.

В желтом пятне к большинству колбочек подходят отдельные волокна зрительного нерва. Вне желтого пятна одно волокно зрительного нерва обслуживает группу колбочек или палочек. Поэтому в области ямки и желтого пятна глаз может различать тонкие детали, а изображение, попадающее на остальные места сетчатки, становится менее четким. Периферическая часть сетчатки служит в основном для ориентирования в пространстве.

В палочках находится пигмент родопсин, собирающийся в них в темноте и выцветающий на свету. Восприятие света палочками обусловлено химическими реакциями под действием света на родопсин. Колбочки реагируют на свет за счет реакции йодопсина.

Кроме родопсина и йодопсина на задней поверхности сетчатки имеется пигмент черного цвета. При свете этот пигмент проникает в слои сетчатки и, поглощая значительную часть световой энергии, защищает палочки и колбочки от сильного светового воздействия.

На месте ствола зрительного нерва располагается слепое пятно. Этот участок сетчатки не чувствителен к свету. Диаметр слепого пятна — 1,88 мм, что соответствует полю зрения 6 градусов. Это значит, что человек с расстояния 1 м может не увидеть предмета диаметром 10 см, если его изображение проектируется на слепое пятно.

Оптическая система глаза

Оптическая система глаза состоит из роговицы, водянистой влаги, хрусталика и стекловидного тела. Преломление света в глазе происходит, главным образом, на роговице и поверхностях хрусталика.

Свет от наблюдаемого предмета проходит через оптическую систему глаза и фокусируется на сетчатке, образуя на ней обратное и уменьшенное изображение (мозг «переворачивает» обратное изображение, и оно воспринимается как прямое).

Показатель преломления стекловидного тела больше единицы, поэтому фокусные расстояния глаза во внешнем пространстве (переднее фокусное расстояние) и внутри глаза (заднее фокусное расстояние) неодинаковы.

Оптическая сила глаза (в диоптриях) вычисляется как обратное заднее фокусное расстояние глаза, выраженное в метрах. Оптическая сила глаза зависит от того, находится ли он в состоянии покоя (58 диоптрий для нормального глаза) или в состоянии наибольшей аккомодации (70 диоптрий).

Аккомодация — это способность глаза четко различать предметы, находящиеся на разных расстояниях. Аккомодация происходит за счет изменения кривизны хрусталика при натяжении или расслаблении мышц ресничного тела. Когда ресничное тело натянуто, хрусталик растягивается, и его радиусы кривизны увеличиваются. При уменьшении натяжения мышцы кривизна хрусталика увеличивается под действием упругих сил.

В свободном, ненапряженном состоянии нормального глаза на сетчатке получаются ясные изображения бесконечно удаленных предметов, а при наибольшей аккомодации видны самые близкие предметы.

Положение предмета, при котором создается резкое изображение на сетчатке для ненапряженного глаза, называют дальней точкой глаза.

Положение предмета, при котором создается резкое изображение на сетчатке при наибольшем возможном напряжении глаза, называют ближней точкой глаза.

При аккомодации глаза на бесконечность задний фокус совпадает с сетчаткой. При наибольшем напряжении на сетчатке получается изображение предмета, находящегося на расстоянии около 9 см.

Разность обратных величин расстояний между ближней и дальней точкой называют диапазоном аккомодации глаза (измеряется в диоптриях).

С возрастом способность глаза к аккомодации уменьшается. В возрасте 20 лет для среднего глаза ближняя точка находится на расстоянии около 10 см (диапазон аккомодации 10 диоптрий), в 50 лет ближняя точка располагается на расстоянии уже около 40 см (диапазон аккомодации 2,5 диоптрии), а к 60 годам уходит на бесконечность, то есть аккомодация прекращается. Это явление называется возрастной дальнозоркостью или пресбиопией.

Расстояние наилучшего зрения — это расстояние, на котором нормальный глаз испытывает наименьшее напряжение при рассматривании деталей предмета. При нормальном зрении оно составляет в среднем 25–30 см.

Приспособление глаза к изменившимся условиям освещенности называется адаптацией. Адаптация происходит за счет изменения диаметра отверстия зрачка, перемещения черного пигмента в слоях сетчатки и различной реакцией на свет палочек и колбочек. Сокращение зрачка происходит за 5 секунд, а его полное расширение — за 5 минут.

Темновая адаптация происходит при переходе от больших яркостей к малым. При ярком свете работают колбочки, палочки же «ослеплены», родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. При резком снижении яркости отверстие зрачка раскрывается, пропуская больший световой поток. Затем из сетчатки уходит черный пигмент, родопсин восстанавливается, и когда его становится достаточно, начинают функционировать палочки. Так как колбочки не чувствительны к слабым яркостям, то сначала глаз ничего не различает. Чувствительность глаза достигает максимального значения через 50–60 минут пребывания в темноте.

Световая адаптация — это процесс приспособления глаза при переходе от малых яркостей к большим. Сначала палочки сильно раздражены, «ослеплены» из-за быстрого разложения родопсина. Колбочки, не защищенные еще зернами черного пигмента, также раздражены слишком сильно. Через 8–10 минут чувство ослепления прекращается, и глаз снова видит.

Поле зрения глаза достаточно широкое (125 градусов по вертикали и 150 градусов по горизонтали), но для ясного различения используется только его малая часть. Поле наиболее совершенного зрения (соответствующее центральной ямке) — около 1–1,5°, удовлетворительного (в области всего желтого пятна) — около 8° по горизонтали и 6° по вертикали. Вся остальная часть поля зрения служит для грубого ориентирования в пространстве. Для обозрения окружающего пространства глазу приходится совершать непрерывное вращательное движение в своей орбите в пределах 45–50°. Это вращение приводит изображения различных предметов на центральную ямку и дает возможность рассмотреть их детально. Движения глаза совершаются без участия сознания и, как правило, не замечаются человеком.

Угловой предел разрешения глаза — это минимальный угол, при котором глаз наблюдает раздельно две светящиеся точки. Угловой предел разрешения глаза составляет около 1 минуты и зависит от контраста предметов, освещенности, диаметра зрачка и длины волны света. Кроме того, предел разрешения увеличивается при удалении изображения от центральной ямки и при наличии дефектов зрения.

Дефекты зрения и их коррекция

При нормальном зрении дальняя точка глаза бесконечно удалена. Это означает, что фокусное расстояние расслабленного глаза равно длине оси глаза, и изображение попадает точно на сетчатку в области центральной ямки.

Такой глаз хорошо различает предметы вдали, а при достаточной аккомодации — и вблизи.

Близорукость

При близорукости лучи от бесконечно удаленного предмета фокусируются перед сетчаткой, поэтому на сетчатке формируется размытое изображение.

Чаще всего это происходит из-за удлинения (деформации) глазного яблока. Реже близорукость возникает при нормальной длине глаза (около 24 мм) из-за слишком большой оптической силы оптической системы глаза (более 60 диоптрий).

В обоих случаях изображение от удаленных предметов находится внутри глаза, а не на сетчатке. На сетчатку попадает только фокус от близко расположенных к глазу предметов, то есть дальняя точка глаза находится на конечном расстоянии перед ним.

Дальняя точка глаза

Близорукость корректируется при помощи отрицательных линз, которые строят изображение бесконечно удаленной точки в дальней точке глаза.

Дальняя точка глаза

Близорукость чаще всего появляется в детском и подростковом возрасте, причем по мере роста глазного яблока в длину близорукость увеличивается. Истинной близорукости, как правило, предшествует так называемая ложная близорукость — следствие спазма аккомодации. В этом случае можно восстановить нормальное зрение при помощи средств, расширяющих зрачок и снимающих напряжение ресничной мышцы.

Дальнозоркость

При дальнозоркости лучи от бесконечно удаленного предмета фокусируются за сетчаткой.

Дальнозоркость вызывается слабой оптической силой глаза для данной длины глазного яблока: либо короткий глаз при нормальной оптической силе, либо малая оптическая сила глаза при нормальной длине.

Чтобы сфокусировать изображение на сетчатке, приходится все время напрягать мышцы ресничного тела. Чем ближе предметы к глазу, тем все дальше за сетчатку уходит их изображение и тем больше требуется усилий мышц глаза.

Дальняя точка дальнозоркого глаза находится за сетчаткой, т. е. в расслабленном состоянии он может четко увидеть лишь предмет, который находится позади него.

Дальняя точка глаза

Конечно, поместить предмет за глаз нельзя, но можно спроецировать туда его изображение при помощи положительных линз.

Дальняя точка глаза

При небольшой дальнозоркости зрение вдаль и вблизи хорошее, но могут быть жалобы на быструю утомляемость и головную боль при работе. При средней степени дальнозоркости зрение вдаль остается хорошим, а вблизи затруднено. При высокой дальнозоркости плохим становится зрение и вдаль, и вблизи, так как исчерпаны все возможности глаза фокусировать на сетчатке изображение даже далеко расположенных предметов.

У новорожденного глаз немного сдавлен в горизонтальном направлении, поэтому у глаза есть небольшая дальнозоркость, которая проходит по мере роста глазного яблока.

Аметропия

Аметропия (близорукость или дальнозоркость) глаза выражается в диоптриях как величина, обратная расстоянию от поверхности глаза до дальней точки, выраженной в метрах.

Оптическая сила линзы, необходимая для коррекции близорукости или дальнозоркости, зависит от расстояния от очков до глаза. Контактные линзы располагаются вплотную к глазу, поэтому их оптическая сила равна аметропии.

Например, если при близорукости дальняя точка находится перед глазом на расстоянии 50 см, то для ее исправления нужны контактные линзы с оптической силой в −2 диоптрии.

Слабая степень аметропии считается до 3 диоптрий, средняя — от 3 до 6 диоптрий и высокая степень — выше 6 диоптрий.

Астигматизм

При астигматизме фокусные расстояния глаза различны в разных сечениях, проходящих через его оптическую ось. При астигматизме в одном глазу сочетаются эффекты близорукости, дальнозоркости и нормального зрения. Например, глаз может быть близоруким в горизонтальном сечении и дальнозорким в вертикальном сечении. Тогда на бесконечности он не сможет видеть ясно горизонтальных линий, а вертикальные будет четко различать. На близком расстоянии, наоборот, такой глаз хорошо видит вертикальные линии, а горизонтальные будут расплывчатыми.

Причина астигматизма либо в неправильной форме роговицы, либо в отклонении хрусталика от оптической оси глаза. Астигматизм чаще всего является врожденным, но может стать следствием операции или глазной травмы. Кроме дефектов зрительного восприятия, астигматизм обычно сопровождается быстрой утомляемостью глаз и головными болями. Астигматизм корректируется при помощи цилиндрических (собирательных или рассеивающих) линз в сочетании со сферическими линзами.

mhlife.ru

Ход лучей света в глазу — Знаешь как

Ход лучей света в глазуОтдельные части глаза (роговица, хрусталик, стекловидное тело) обладают способностью преломлять проходящие через них лучи. С точки зрения физики глаз представляет собой оптическую систему, способную собирать и преломлять лучи.

Преломляющую силу отдельных частей (линз в приборе) и всей оптической системы глаза измеряют в диоптриях.

Под одной диоптрией понимают преломляющую силу линзы, фокусное расстояние которой составляет 1 м. Если преломляющая сила увеличивается, то фокусное расстояние укорачивается. Отсюда следует, что линза, у которой фокусное расстояние равно 50 см, будет обладать преломляющей силой, равной 2 диоптриям (2 D).

Оптическая система глаза является весьма сложной. Достаточно указать, что только преломляющих сред имеется несколько, причем каждая среда имеет свою преломляющую силу и особенности строения. Все это крайне усложняет изучение оптической системы глаза.

Рис. Построение изображения в глазу (объяснение в тексте)

 

Глаз часто сравнивают с фотоаппаратом. Роль камеры играет полость глаза, затемненная сосудистой оболочкой; светочувствительным элементом является сетчатка. В камере имеется отверстие, в которое вставлена линза. Лучи света, попадая в отверстие, проходят через линзу, преломляются и падают на противоположную стенку.

Оптическая система глаза представляет собой преломляющую собирательную систему. Она преломляет проходящие через нее лучи и опять собирает их в одну точку. Таким образом возникает действительное изображение реального предмета. Однако изображение предмета на сетчатке получается обратное и уменьшенное.

Чтобы понять это явление, обратимся к схематическому глазу. Рис.  дает представление о ходе лучей в глазу и получении обратного изображения предмета на сетчатке. Луч, отходящий от верхней точки предмета, обозначенной буквой а, проходя через линзу, преломляется, меняет направление и занимает на сетчатке положение нижней точки, обозначенной на рисунке а1 Луч от нижней точки предмета в, преломляясь, падает на сетчатку как верхняя точка в1. Соответствующим же образом падают лучи от всех точек. Следовательно, на сетчатке получается действительное изображение предмета, но оно обратное и уменьшенное.

Так, расчеты показывают, что размер букв данной книги, если при чтении она находится на расстоянии 20 см от глаза, на сетчатке будет равен 0,2 мм. То обстоятельство, что мы видим предметы не в их перевернутом изображении (вверх ногами), а в их естественном виде, вероятно, объясняется накопленным жизненным опытом.

Ребенок в первые месяцы после рождения путает верхнюю и нижнюю сторону предмета. Если такому ребенку показать горящую свечку, то ребенок, стараясь схватить пламя, протянет руку не к верхнему, а к нижнему концу свечи. Контролируя в течение дальнейшей жизни показания глаза руками и другими органами чувств, человек начинает видеть предметы так, как они есть, несмотря на их обратное изображение на сетчатке.

Аккомодация глаза. Человек не может одновременно одинаково четко видеть предметы, находящиеся на разных расстояниях от глаза.

Для того чтобы хорошо видеть предмет, надо, чтобы лучи, отходящие от этого предмета, собирались на сетчатке. Только в том случае, когда лучи падают на сетчатку, мы видим ясное изображение предмета.

Приспособление глаза к получению отчетливых изображений предметов, находящихся на разных расстояниях, называется аккомодацией.

Ход лучей света в глазу

Для того чтобы в каждом случае получить четкое изображение, необходимо изменять расстояние между светопреломляющей линзой и задней стенкой камеры. Так устроен фотоаппарат. Чтобы получить четкое изображение на задней стенке камеры, отодвигают или приближают объектив. По такому принципу происходит аккомодация у рыб. У них хрусталик при помощи специального приспособления отодвигается или приближается к задней стенке глаза.

Рис. 2 ИЗМЕНЕНИЕ КРИВИЗНЫ ХРУСТАЛИКА ПРИ АККОМОДАЦИИ 1 — хрусталик; 2 — сумка хрусталика; 3 — ресничные отростки. Верхний рисунок — увеличение кривизны хрусталика. Ресничная связка расслаблена. Нижний рисунок — кривизна хрусталика уменьшена, ресничные связки натянуты.

Однако четкое изображение можно получить и в том случае, если изменяется преломляющая сила линзы, а это возможно при изменении ее кривизны.

По этому принципу происходит аккомодация у человека. При видении предметов, находящихся на разных расстояниях, кривизна хрусталика изменяется и благодаря этому точка, где сходятся лучи, приближается или удаляется, попадая каждый раз на сетчатку. Когда человек рассматривает близкие предметы, хрусталик делается более выпуклым, а при рассмотрении дальних предметов — более плоским.

Как же происходит изменение кривизны хрусталика? Хрусталик находится в специальной прозрачной сумке. От степени натяжения сумки зависит кривизна хрусталика. Хрусталик обладает эластичностью, поэтому, когда сумка натягивается, он становится плоским. При расслаблении же сумки хрусталик в силу своей -эластичности приобретает более выпуклую форму (рис.2). Изменение натяжения сумки происходит при помощи специальной круговой аккомодационной мышцы, к которой прикреплены связки капсулы.

При сокращении аккомодационных мышц связки сумки хрусталика ослабевают и хрусталик приобретает более выпуклую форму.

От степени сокращения этой мышцы зависит и степень изменения кривизны хрусталика.

Если находящийся на далеком расстоянии предмет постепенно приближать к глазу, то на расстоянии 65 м начинается аккомодация. По мере дальнейшего приближения предмета к глазу аккомодационные усилия возрастают и на расстоянии 10 см оказываются исчерпанными. Таким образом, точка ближнего видения будет находиться на расстоянии 10 см. С возрастом эластичность хрусталика постепенно уменьшается, а следовательно, меняется и способность к аккомодации. Ближайшая точка ясного видения у 10-летнего находится на расстоянии 7 см, у 20-летнего — на расстоянии 10 см, у 25-летнего — 12,5 см, у 35-летнего — 17 см, у 45-летнего — 33 см, у 60-летнего — 1 м, у 70-летнего — 5 м, у 75-летнего способность к аккомодации почти теряется и ближайшая точка ясного видения отодвигается в бесконечность.

С уменьшением эластичности хрусталика и увеличением расстояния точки ясного видения связаны некоторые возрастные нарушения зрения — старческая дальнозоркость.

 

Статья на тему Ход лучей света в глазу

znaesh-kak.com

Как устроен глаз | Сайт психолога Светланы Пилюгиной

КАК УСТРОЕН ГЛАЗhow77-1

По форме глаз человека представляет собой шар диаметром примерно 2,5 см. Этот шар называют глазным яблоком. В глаз поступает свет, который отражается от окружающих нас предметов. Аппарат, который воспринимает этот свет, находится на задней стенке глазного яблока (изнутри) и называется сетчаткой. Он состоит из нескольких слоев светочувствительных клеток, которые обрабатывают поступающую к ним информацию и отправляют ее в мозг по зрительному нерву.

Но для того, чтобы лучи света, поступающие в глаз со всех сторон, сфокусировались на такой небольшой площади, которую занимает сетчатка, они должны претерпеть преломление. Для этого в глазном яблоке есть естественная двояковыпуклая линза — хрусталик. Он находится в передней части глазного яблока.

Хрусталик способен менять свою кривизну. Разумеется, он делает это не сам, а с помощью специальной цилиарной мышцы. Чтобы настроиться на видение близко расположенных объектов, хрусталик увеличивает кривизну, становится более выпуклым и сильнее преломляет свет. Для видения удалённых предметов хрусталик становится более плоским.

Свойство хрусталика менять свою преломляющую силу, а вместе с этим и фокусную точку всего глаза,  называется аккомодацией.

how77-6

В преломлении света участвует также вещество, которым заполнена большая часть (2/3 объема) глазного яблока — стекловидное тело. Оно состоит из прозрачного желеобразного вещества, которое не только участвует в преломлении света, но также обеспечивает форму глаза и его несжимаемость.

Свет поступает на хрусталик не по всей передней поверхности глаза, а через маленькое отверстие — зрачок (мы видим его как черный кружок в центре глаза). Размер зрачка, а значит, количество поступающего света, регулируется специальными мышцами. Эти мышцы находятся в радужной оболочке, окружающей зрачок (радужке). Радужка, помимо мышц, содержит пигментные клетки, которые определяют цвет наших глаз.

how77-2

Понаблюдайте за своими глазами в зеркало, и вы увидите, что если на глаз направить яркий свет, то зрачок сужается, а в темноте он, наоборот, расширяется. Так глазной аппарат защищает сетчатку от губительного действия яркого света.

Снаружи глазное яблоко покрыто прочной белковой оболочкой толщиной 0,3-1 мм — склерой. Она состоит из волокон, образованных белком коллагеном, и выполняет защитную и опорную функцию. Склера имеет белый цвет с молочным отливом, за исключением передней стенки, которая прозрачна. Её называют роговицей. В роговице происходит первичное преломление лучей света

Под белковой оболочкой находится сосудистая оболочка, которая обеспечивает клетки глаза питанием. Именно в ней находится радужка со зрачком. По периферии радужка переходит в цилиарное, или ресничное тело. В его толще расположена цилиарная мышца, которая изменяет кривизну хрусталика и служит для аккомодации.

Между роговицей и радужкой, а также между радужкой и хрусталиком находятся пространства – камеры глаза, заполненные прозрачной, светопреломляющей жидкостью, которая питает роговицу и хрусталик.

Защиту глаза обеспечивают также веки — верхнее и нижнее — и ресницы. В толще век находятся слезные железы. Жидкость, которую они выделяют, постоянно увлажняет слизистую оболочку глаза.

Под веками находится 3 пары мышц, которые обеспечивают подвижность глазного яблока. Одна пара поворачивает глаз влево и вправо, другая — вверх и вниз, а третья вращает его относительно оптической оси.

Мышцы обеспечивают не только повороты глазного яблока, но и изменение его формы. Дело в том, что глаз в целом тоже принимает участие в фокусировке изображения. Если фокус находится за пределами сетчатки, глаз немного вытягивается, чтобы видеть вблизи. И наоборот, округляется, когда человек рассматривает далёкие предметы.

Если в оптической системе есть изменения, то в таких глазах появляются близорукость или дальнозоркость. У людей, страдающих этими заболеваниями, фокус попадает не на сетчатку, а перед ней или за ней, и поэтому они видят все предметы размытыми.

how77-3

 

При близорукости в глазу происходит растяжение плотной оболочки глазного яблока (склеры) в передне-заднем направлении. Глаз вместо шаровидной приобретает форму эллипсоида. Из-за такого удлинения продольной оси глаза изображения предметов фокусируются не на самой сетчатке, а передней, и человек стремится все приблизить к глазам или пользуется очками с рассеивающими («минусовыми») линзами для уменьшения преломляющей силы хрусталика.

Дальнозоркость развивается, если глазное яблоко укорочено в продольном направлении. Световые лучи при этом состоянии собираются за сетчаткой. Для того чтобы такой глаз хорошо видел, перед ним нужно поместить собирающие — «плюсовые» очки.

how77-7

Обратимся к устройству фотоаппарата. Роль светопреломляющей системы (хрусталика) в фотоаппарате играет система линз. Диафрагма, регулирующая размер светового пучка, который поступает в объектив, играет роль зрачка. А «сетчатка» фотоаппарата — это фотопленка (в аналоговых фотоаппаратах) или светочувствительная матрица (в цифровых). Однако важное отличие сетчатки от светочувствительной матрицы фотоаппарата состоит в том, что в её клетках происходит не только восприятие света, но и начальный анализ зрительной информации и выделение наиболее важных элементов зрительных образов, например направления и скорости движения объекта, его размеров.

how77-4

 

how77-5

 Кстати…

На сетчатке глаза и светочувствительной матрице фотоаппарата формируется уменьшенное перевернутое изображение внешнего мира — результат действия законов оптики. Но вы видим мир не перевернутым, потому что в зрительном центре мозга происходит анализ полученной информации с учетом этой «поправки».

А вот новорожденные видят мир перевёрнутым примерно до трёх недель. К трём неделям мозг обучается переворачивать увиденное.

Известен такой интересный эксперимент, автор которого — Джордж М. Стрэттон из Калифорнийского университета. Если человеку надеть очки, которые переворачивают зрительный мир вверх ногами, то в первые дни у него происходит совершенная дезориентация в пространстве. Но уже через неделю человек привыкает к «перевернутому» миру вокруг него, и даже все меньше осознает, что окружающий мир перевернут; у него формируются новые зрительно-двигательные координации. Если после этого снять очки-перевертыши, то у человека снова происходит нарушение ориентации в пространстве, которое вскоре проходит. Этот эксперимент демонстрирует гибкость работы зрительного аппарата и мозга в целом.

 

piliugina.ru

Нарушения зрения, связанные с неправильным преломлением света в глазе: миопия, дальнозоркость, астигматизм - симптомы, лечение, профилактика, причины, первые признаки

Общие сведения. Работа глаза в норме

Сетчатка может воспринимать световые лучи нормально только в том случае, если они сфокусированы точно на ней. Для этого орган зрения снабжен специальной линзой – хрусталиком. Хрусталик окружен особой мышцей, в зависимости от напряжения которой он может менять свою кривизну. Таким образом, обеспечивается точная фокусировка картинки на сетчатке.

Новости по теме

Кроме того, лучи света преломляются не только в хрусталике, но и в других структурах глаза: в роговой оболочке и в веществе, заполняющем глазное яблоко – стекловидном теле.

Существуют нарушения, при которых фокусировка лучей происходит неправильно. Ниже рассмотрим их основные виды и причины.

Дальнозоркость (гиперметропия)

Дальнозоркость – патологическое состояние, при котором пучки света фокусируются позади сетчатки. Это может происходить в результате врожденного уменьшения глазного яблока в переднезаднем направлении, либо если хрусталик чрезмерно расслаблен, плохо работают окружающие его мышцы. С возрастом все люди начинают страдать дальнозоркостью, она является одной из основных причин возрастного снижения зрения. Поэтому, если дальнозоркость была у человека с детства, после 40 – 50 лет она усиливается.

Нарушения зрения зависят от степени дальнозоркости:

  • Легкая степень: зрение почти не нарушено. Патологические изменения может выявить только окулист во время осмотра.
  • Средняя степень: предметы вдали видны хорошо, а вблизи – плохо.
  • Тяжелая: одинаково плохо видны предметы и вблизи, и вдали.

Близорукость (миопия)

Близорукость, или миопия, – такое нарушение зрения, при котором пучки света фокусируются не на сетчатке, а перед ней. Хрусталик работает сильнее, чем это требуется. Основные причины близорукости: врожденное нарушение размеров глазного яблока (оно становится более вытянутым в переднезаднем направлении), спазм мышцы, регулирующей кривизну хрусталика (встречается в молодом возрасте), смещение хрусталика в результате травмы, старческие изменения. После 40 – 50 лет зрение обычно улучшается, так как развивается возрастная дальнозоркость, которая компенсирует близорукость.

Больной с близорукостью хорошо видит предметы, расположенные вблизи, но те, что находятся вдали, имеют нечеткие, размытые контуры. Особенно остро проблема начинает ощущаться в школе, когда ребенок не видит с задней парты то, что написано на доске.

Астигматизм

Астигматизм – нарушение зрения, которое обусловлено изменением формы роговицы и хрусталика. В норме и хрусталик, и роговица имеют идеальную сферическую поверхность, преломляющую свет одинаково во всех направлениях. Если она становится неровной, то и свет преломляется неодинаково. Одни лучи падают на сетчатку, другие перед ней, третьи – позади нее. Картинка получается неровной, как будто она отражается на вогнутой или выпуклой поверхности столовой ложки. Основные причины астигматизма:

  • Врожденные нарушения формы роговицы и хрусталика.
  • Травмы, ожоги, перенесенные операции на роговице.

Если не проводить лечение, то со временем астигматизм приводит к сильному ухудшению зрения. Он является основной причиной косоглазия у детей.

Лечение нарушений преломления света в глазном яблоке

Существует три основных метода лечения близорукости, дальнозоркости и астигматизма:

  • Ношение очков. В каждом случае линзы подбираются индивидуально.
  • Ношение контактных линз. Они считаются более современными и удобными, чем очки, но за ними нужно правильно ухаживать, а у людей с повышенной чувствительностью и аллергическими реакциями они приводят к раздражению глаз.
  • Хирургия при помощи эксимерного лазера. Во время операции роговице придают определенную форму, благодаря чему преломление света в глазу становится правильным.

Материал подготовлен редакцией проекта «Здоровье Mail.Ru».

Обнаружили ошибку? Выделите ее и нажмите Ctrl+Enter.

health.mail.ru

Строение глаза

Глаз состоит из глазного яблока, защитного, вспомогательного и двигательного аппаратов.

Глазное яблоко.

Орган шарообразной формы, сплющенной спереди назад, лежит в передней части глазницы, за веками. Позади глазного яблока имеется ретробульбарное (заглазничное) пространство, заполненное мышцами, фасциями, нервами, сосудами и жиром. Глазное яблоко соединяется с мозгом посредством зрительного нерва.

В глазном яблоке различают три оболочки (фиброзную, сосудистую и сетчатую) и светопреломляющие среды (роговицу, жидкость передней и задней камеры глаза, хрусталик и стекловидное тело).

Фиброзная (наружная) оболочка глазного яблока делится на белочную оболочку (склеру) и роговицу —прозрачную плотную оболочку, расположенную в передней части глазного яблока. Место перехода из непрозрачной части наружной оболочки в прозрачную (роговицу) называется лимбом.

Сосудистая оболочка — средняя оболочка глазного яблока делится на три части: радужную оболочку, ресничное тело (цилиарное) и собственно сосудистую оболочку. Состоит в основном из сосудов, обеспечивающих питание глаза.

Радужная оболочка —самая передняя часть сосудистой оболочки, расположена между хрусталиком и роговицей, отделяет переднюю камеру глаза от задней. В центре ее есть отверстие, которое называется зрачком. Радужная оболочка имеет мышцы, сужающие и расширяющие зрачок. Цвет ее зависит от количества пигмента. Радужная оболочка играет роль диафрагмы, регулируя количество попадающего в глаз света.

Ресничное (цилиарное) тело —средняя часть сосудистой оболочки. Расположено между радужной и собственно сосудистой оболочками. От его внутренней поверхности отходят отростки, к которым посредством циновой связки прикреплен хрусталик. Ресничное тело имеет мышцы, влияющие на кривизну хрусталика. Задняя поверхность радужной оболочки, хрусталик и цилиарное тело формируют заднюю камеру глаза, которая с помощью зрачка сообщается с передней камерой. Ресничное тело продуцирует внутриглазную жидкость и регулирует внутриглазное давление.

Собственно сосудистая оболочка занимает 2/3 площади. Самая задняя часть сосудистого тракта темно-бурого цвета, в ней содержится большое количество пигмента — меланина. Он предохраняет сетчатку от диффузного освещения лучами, проходящими внутрь глаза.

Сетчатая оболочка является внутренней оболочкой глазного яблока. Подразделяется на зрительную и слепую части.

Сетчатка представляет собой тонкую прозрачную розового цвета оболочку, состоящую из 10 слоев нервных клеток, их отростков и соединительной ткани. Основной слой сетчатки — слой палочек и колбочек, являющихся зрительными рецепторами. В палочках содержится пигмент родопсин, а в колбочках — пигмент йодопсин. Под действием лучей света происходит цикл химических превращений этих веществ, вызывающих возбуждение зрительных рецепторов. По зрительным путям (зрительному нерву, перекрестку и зрительному тракту) это возбуждение поступает в зрительный бугор, а затем в кору головного мозга, в котором возникает ощущение видения предметов.

Палочки и колбочки являются фоторегуляторами: палочки — для светоощущения, колбочки—для цветоощущения. Палочки реагируют на минимальное количество света, с помощью колбочек глаз различает форму предметов, яркость света и цвет.

К светопреломляющим средам относятся внутриглазная жидкость, хрусталик, стекловидное тело, роговица. Эти среды составляют диоптрический аппарат глаза, благодаря которому на сетчатке получается отчетливое изображение.

Внутриглазная жидкость прозрачная и бесцветная. В состав ее входят вода, белки, минеральные соли, витамины. Она образуется ресничным телом и играет большую роль в питании глаза и поддержании в нем необходимого внутриглазного давления.

Хрусталик имеет вид прозрачной двояковыпуклой линзы. Он состоит из паренхимы и капсулы. Сосудов и нервов в хрусталике нет, питается путем осмоса из сосудов цилиарного тела. В своем положении хрусталик удерживается цинновой связкой. Она прикрепляет его к цилиарному телу.

Стекловидное тело заполняет пространство между хрусталиком и сетчаткой и представляет собой студневидную консистенцию, лишенную сосудов и нервов.

Роговица, внутриглазная жидкость, хрусталик и стекловидное тело преломляют лучи света и соединяют их в фокусе на сетчатке.

К защитному и вспомогательному аппаратам глаза относят: орбиту, периорбиту, веки, фасции, слезный аппарат, глазной жир.

Орбита (глазница) —костная полость, в которой расположено глазное яблоко со всеми вспомогательными органами.

Периорбита расположена внутри глазницы и представляет собой плотный соединительный мешок, в котором лежит глазное яблоко, мышцы и глазной жир.

Веки расположены впереди глаз и защищают его от внешних влияний и предохраняют конъюнктиву и роговицу от высыхания, а также регулируют поступление света. У животных имеются три века: верхнее, нижнее и третье. На краю век расположены ресницы. Наружная поверхность век покрыта кожей, а внутренняя -соединительной оболочкой (конъюнктивой). Конъюнктива, переходя с век на глазное яблоко, образует конъюнктивальный мешок, который в норме розового или бледно-розового цвета.

Слезный аппарат состоит из слезных желез верхнего и третьего век, слезных точек, слезных канальцев, слезного мешка и слезно-носового протока. Слезная железа верхнего века лежит в ямке на внутренней поверхности глазничного отростка лобной кости. Слезная железа третьего века располагается на хряще третьего века.

Слезы увлажняют роговицу и вымывают из конъюнктивального мешка посторонние элементы. Кроме того, они принимают участие в питании роговицы. Во время сна выделение слез прекращается. Слезы собираются во внутреннем углу глаза, а затем по слезно-носовому протоку выделяются в носовую полость. У лошади и крупного рогатого скота отверстие слезно-носового протока доступно для промывания.

Глазной жир представлен жировой подушкой глазного яблока. Он способствует более легкому движению глазного яблока, защищает его от травм и переохлаждения.

Глазное яблоко обладает подвижностью благодаря действию семи мышц: внутренней, наружной, верхней и нижней прямых, верхней и нижней косых и оттягивателя глазного яблока. Все они расположены в полости периорбиты и обеспечивают поворот глазного яблока в нужном направлении.

Рефракция и аккомодация глаза.

Под рефракцией глаза понимают преломление падающих в глаз световых лучей при их прохождении через преломляющие среды глазного яблока. Вследствие рефракции лучи света при прохождении через преломляющие среды глаза собираются в фокусе на сетчатке, впереди или позади нее, что зависит от преломляющей силы оптического аппарата и длина глаза.

В зависимости от положения фокуса по отношению к сетчатке различают нормальную рефракцию – эмметропию и ненормальную — аметропию.

Последняя, в свою очередь, делится на миопию(близорукость), гиперметропию (дальнозоркость).

При нормальной рефракции лучи, идущие от дальних предметов, собираются в фокусе на сетчатке. Если преломляющая сила глаза велика или глазное яблоко длинное, то лучи собираются в фокусе впереди сетчатки — такое явление называют близорукостью. Противоположное явление близорукости — дальнозоркость. Оно наблюдается в тех случаях, когда преломляющая сила оптических сред глаза слабая или глазное яблоко укорочено.

Аккомодация глаза — это приспособление глаза к ясному видению предметов на разных расстояниях. Она достигается способностью глаза изменять в случае необходимости свою рефракцию путем изменения кривизны хрусталика. В механизме аккомодации глаза существенная роль принадлежит ресничным мышцам, при сокращении которых хрусталик принимает более выпуклую форму, а при ослаблении — более плоскую форму.



biofile.ru

Оптическая система человеческого глаза

Восприятие объектов окружающей среды человеком происходит путем проекции на сетчатке глаза. Сюда световые лучи попадают, проходя через сложную оптическую систему.

Строение

Оптическая система человеческого глазаОптическая система человеческого глаза

В зависимости от функций, которые выполняет отдел глаза, утверждает oбaглазa.рy, различают светопроводящую и световоспринимающую части.

Светопроводящий отдел

К светопроводящему отделу относят органы зрения прозрачной структуры:

Главная функция их, по мнению оbаglaza.ru, пропускать свет и преломлять лучи для проекции на сетчатку.

Световоспринимающий отдел

Световоспринимающий отдел глаза представлен сетчаткой. Проходя сложный путь преломления в роговице и хрусталике, лучи света фокусируются на задней части глазного яблока в перевернутом виде. В сетчатке, благодаря наличию рецепторов происходит первичный анализ видимых объектов (различие цветовой гаммы, световостриятие).

Трансформация лучей

Рефракция – это процесс прохождения света оптической системой глаза, напоминает оbaglаzа ru. В основу понятия заложены принципы законов оптики. Оптическая наука обосновывает законы прохождения лучей света через разнообразные среды.

1. Оптические оси

  • Центральная – прямая линия (основная оптическая ось глаза), проходящая через центр всех преломляющих оптических поверхностей.
  • Зрительная – лучи света, которые попадают параллельно основной оси преломляются и локализуются в центральном фокусе.

2. Фокус

Основной передний фокус - точка оптической системы где, после преломления, локализируются световые потоки центральной и зрительной оси и образуют изображение удаленных объектов.

Дополнительные фокусы – собирает лучи от объектов, размещенных на конечном расстоянии. Расположены они дальше основного переднего фокуса, так как, чтобы сфокусироваться лучам, нужен больший угол преломления.

Методы исследование

Для измерения функциональности оптической системы глаз в первую очередь, по мнению obaglaza.ru, нужно определить радиус кривизны всех структурных преломляющих поверхностей (передних и задних сторон хрусталики и роговицы). Немало важными показателями являются также глубина передней камеры, толщина роговой оболочки и хрусталика, длинна и угол преломления осей зрения.

Определить все эти величины и показатели (кроме преломления) можно с помощью:

  • Ультразвукового исследования;
  • Оптических методов;
  • Рентгенограмм.

Коррекция

Измерение длинны осей широко используется в области хирургической коррекции оптической системы глаз (микрохирургия, коррекция лазером). С помощью современных достижений медицины, подсказывает обaглaза.ру, можно устранить ряд врожденных и приобретенных патологий оптической системы (имплантация хрусталика, манипуляции на роговице глаз и её протезирование и прочее).

Интересно знать

Согласно научным исследованиям ученых, дети в младенчестве обладают слабовыраженной рефракцией. Зрение у малышей первых лет жизни характеризуется дальнозоркостью постепенно трансформируется в показатели нормального (эмметропия) или близорукости (миопию).

Глазное яблоко растет до 15 летнего возраста (интенсивно до 3 лет) из-за чего рефракция постоянно увеличивается. С возрастом увеличивается длина основной оптической оси, достигая к 7 лет 22 мм (95% оси здорового глаза взрослого человека).

Записаться со скидкой на обследование в Москве по номеру 8-499-116-78-53

obaglaza.ru