Магниты, такие, как игрушки, прилепленные к вашему домашнему холодильнику, или подковы, которые вам показывали в школе, имеют несколько необычных черт. Прежде всего, магниты, притягиваются к железным и стальным предметам, например к двери холодильника. Кроме того, у них есть полюса.
Приблизьте друг к другу два магнита. Южный полюс одного магнита притянется к северному полюсу другого. Северный полюс одного магнита отталкивает северный полюс другого.
Магнитное поле генерируется электрическим током, то есть движущимися электронами. Электроны, движущиеся вокруг атомного ядра, несут отрицательный заряд. Направленное перемещение зарядов с одного места на другое называется электрическим током. Электрический ток формирует около себя магнитное поле.
Это поле своими силовыми линиями, как петлей, охватывает путь электрического тока, подобно арке, которая стоит над дорогой. Например, когда включают настольную лампу и по медным проводам течет ток, то есть электроны в проводе перескакивают от атома к атому и вокруг провода создается слабое магнитное поле. В линиях высоковольтных передач ток намного сильнее, чем в настольной лампе, поэтому вокруг проводов таких линий формируется очень сильное магнитное поле. Таким образом, электричество и магнетизм — это две стороны одной и той же медали — электромагнетизма.
Движение электронов внутри каждого атома создает вокруг него крошечное магнитное поле. Движущийся по орбите электрон образует вихреобразное магнитное поле. Но большая часть магнитного поля создается не движением электрона по орбите вокруг ядра, а движением атома вокруг своей оси, так называемым спином электрона. Спин характеризует вращение электрона вокруг оси, как движение планеты вокруг своей оси.
В большинстве материалов, таких, как пластмассы, магнитные поля отдельных атомов ориентированы беспорядочно и взаимно гасят друг друга. Но в таких материалах, как железо, атомы можно сориентировать так, что их магнитные поля сложатся, поэтому кусок стали намагничивается. Атомы в материалах соединены в группы, которые называются магнитными доменами. Магнитные поля одного отдельного домена сориентированы в одну сторону. То есть каждый домен — это маленький магнитик.
Различные домены ориентированы в самых разнообразных направлениях, то есть неупорядоченно, и гасят магнитные поля друг друга. Поэтому стальная полоса — не магнит. Но если нам удастся сориентировать домены в одну сторону, чтобы силы магнитных полей сложились, вот тогда берегитесь! Стальная полоса станет мощным магнитом и притянет любой железный предмет от гвоздя до холодильника.
Интересный факт: минерал магнитный железняк — естественный магнит. Но все же большинство магнитов изготовляют искусственно.
Какая сила может заставить атомы построиться в стройную линию, чтобы получился один большой домен? Поместите стальную полосу в сильное магнитное поле. Постепенно один за другим все домены повернутся в направление приложенного магнитного поля. По мере поворота домены будут втягивать в это движение другие атомы, увеличиваясь в размерах, буквально разбухая. Потом одинаково ориентированные домены соединятся, и вот, пожалуйста, стальная полоса превратилась в магнит.
Вы можете продемонстрировать это своим товарищам с помощью обыкновенного стального гвоздя. Положите гвоздь в магнитное поле большого подковообразного магнита. Подержите его там несколько минут, пока домены гвоздя не выстроятся в нужном направлении. Как только это произойдет, гвоздь ненадолго станет магнитом. С его помощью можно будет даже подбирать с пола упавшие булавки.
Рейтинг: 4.8/5. Из 41 голоса.
Please wait...
www.voprosy-kak-i-pochemu.ru
Трудно найти человека, который бы не знал, что такое магнит. Точнее о том, что некий металлообразный кусок может притягивать к себе различные железные предметы, а также взаимно притягиваться или взаимно отталкиваться от другого такого же магнита. Но вот саму природу подобных явлений знает далеко не каждый. Хотя суть магнита не таит в себе особых тайн и сложностей. Всё в нём достаточно просто. Давайте же в этой статье рассмотрим причину и природу, что стоит в основе работы магнита.
Итак, прежде всего начнём со следующего. Думаю Вам приходилось слышать, что основой работы любых электрических приборов является движение электрического тока по внутренним цепям устройства. Электрический ток представляет собой маленькие электрические частицы, имеющие определённый электрический заряд и упорядоченно передвигаемые внутри проводников (всего того, что проводит через себя ток) при появлении такой возможности (когда возникает замкнутая цепь). Частицы с отрицательным зарядом принято называть электронами. Именно они в твёрдых веществах совершают свою работу (передвижение). В жидких и газообразных веществах передвигаются ионы, имеющие плюсовой заряд.
Какая же связь между электрически заряженными частицами и магнитами, выражающую его суть? А связь прямая! Учёными давно было установлено, что магнитное поле возникает именно вокруг движущегося электрического заряда. Также Вы могли слышать о том, что магнитные поля существуют вокруг обычных проводов, по которым дижится ток. Как только ток прекращает своё движение, то и электромагнитное поле также пропадает. Это суть и условие возникновения магнитного поля.
Из школьной физики известно, что любые окружающие нас вещи и предметы состоят из атомов и молекул (достаточно мелких элементарных частиц). Эти самые элементарные частицы, в свою очередь, имеют следующее строение. Внутри находится ядро (состоящее из протонов и нейтронов) (ядро имеет плюсовой заряд), а вокруг этого ядра с огромной скоростью вращаются более мелкие частички, это электроны (имеющие отрицательный заряд).
Так вот, суть магнита заключается в следующем. Поскольку мы выяснили, что магнитное поле возникает вокруг движущихся электрических зарядов, а электроны есть во всех атомах и молекулах, и они постоянно движутся, следовательно атомы и молекулы имеют вокруг себя магнитные поля (они очень малы и по силе и по размерам). В добавок стоит учесть, что различные вещества и предметы имеют различные магнитные свойства. У одних магнитные свойства выраженные очень сильно, а у других на столько слабо, что свидетельствует о полном отсутствии полей.
Вот основа природы и сути магнита. Но ведь даже те вещества, которые имеют большую интенсивность проявления магнитных полей (это ферромагнетики, самым известным из которых является простое железо) не всегда магнитят. Почему же так? Потому что существует эффект однонаправленности и хаотичности. Поясню что это такое. Суть магнита (проявление магнетизма) зависит не только от вещества, но и от того положения атомов и молекул, которое имеется внутри вещества. Если два магнита соединить таким образом, что их полюса будут совпадать по направлению, то магнитная сила полей усилит друг друга и итоговое общее поле станет сильнее. Но если эти магниты расположить относительно друг друга противоположными полюсами, естественно, они будут угнетать друг друга, а их общее поле осклабится. Так и внутри веществ, чтобы получить наибольшее магнитное поле, необходимо что бы все атомы и молекулы магнитного вещества были однонаправленные своими полюсами. Это достигается различными способами.
И так, с самой сутью магнита и его природой действия разобрались. Теперь немного о том как делаются магниты. Если нужно изготовить постоянный магнит (обычный кусок магнита, который постоянно магнитит) берут материал из ферромагнетика, помещают его в магнитное поле достаточно большой интенсивности на определённое время. После чего этот ферромагнетик сам начинает обладать магнитными свойствами. В результате помещения его в магнитное поле большой интенсивности элементарные частицы вещества повернулись в одну сторону, что послужило возникновению эффекта однонаправленности атомов и молекул.
Для получения электромагнитов использую простые медные катушки, внутрь которых помещён сердечник из ферромагнетика, усиливающий общий магнитный эффект. То есть, когда через эту катушку пропускают постоянный ток она начинает притягивать к себе железные предметы. По катушки ведь течёт ток (заряженные частицы). Следовательно вокруг неё будет возникать и электромагнитное поле. А чем больше витков на катушке и чем больше тока будет проходить через неё, тем большая магнитная сила будет порождаться вокруг неё.
P.S. Вот в принципе мы и разобрались с природой и сутью магнита. Зная общий принцип устройства и работы магнита (электромагнита) Вам теперь стало всё ясно, почему именно магниты притягивают к себе железные предметы.
electrohobby.ru
"
Наше понимание базовой структуры материи развивалось постепенно. Атомная теория строения вещества показала, что не все в мире устроено так, как кажется на первый взгляд, и что сложности на одном уровне легко объясняются на следующем уровне детализации. На протяжении всего ХХ века, после открытия структуры атома (то есть после появления модели атома Бора), усилия ученых были сосредоточены на разгадке структуры атомного ядра.
Первоначально предполагалось, что в атомном ядре существует только два типа частиц — нейтроны и протоны. Однако, начиная с 1930-х годов, ученые все чаще стали получать экспериментальные результаты, необъяснимые в рамках классической модели Бора. Это навело ученых на мысль, что на самом деле ядро представляет собой динамичную систему разнообразных частиц, чье скоротечное образование, взаимодействие и распад играют ключевую роль в ядерных процессах. К началу 1950-х годов изучение этих элементарных, как их назвали, частиц вышло на передний край физической науки." elementy.ru/trefil/46"Общая теория взаимодействий опирается на принцип непрерывности.
Первым шагом в создании общей теории, была материализация абстрактного принципа непрерывности к реально существующему миру, который мы наблюдаем вокруг. В результате такой материализации автор пришёл к выводу о существовании внутренней структуры физического вакуума. Вакуум представляет собой пространство непрерывно заполненное фундаментальными частицами - бионами - различные движения, расположения и объединения которых, способны объяснить все богатство и разнообразие природы и разума.
В результате была создана новая общая теория, которая на основе одного принципа, и следовательно, одинаковых, непротиворечивых и логически связанных наглядных (материальных), а не виртуальных частиц, описывает явления природы и феномены человеческого разума. / Главный тезис – принцип непрерывности.
Принцип непрерывности означает, что ни один реально существующий в природе процесс не может начаться самопроизвольно и закончиться бесследно. Все процессы, которые можно описать математическими формулами, могут быть рассчитаны только с помощью непрерывных зависимостей или функций. Все изменения имеют свои причины, скорость передачи любых взаимодействий обусловлена свойствами той среды, в которой взаимодействуют объекты. Но сами эти объекты в свою очередь изменяют среду, в которой они находятся и осуществляют взаимодействия. \ Поле – множество элементов, для которых определены арифметические действия. Поле также непрерывно - один элемент поля переходит в другой плавно, границу между ними указать невозможно.
Такое определение поля, также вытекает из принципа непрерывности. Оно (определение) требует описания элемента, ответственного за все виды полей и взаимодействий. В общей теории взаимодействий, в отличие от теорий, доминирующих на данный момент, квантовая механика и теория относительности, такой элемент определён явно. / Этим элементом является бион. Всё пространство Вселенной и вакуум, и частицы состоят из бионов. Бион это элементарный диполь, то есть частица, состоящая из двух связанных, одинаковых по величине, но разных по знаку, зарядов. Суммарный заряд биона равен нулю. Подробное устройство биона показано на странице Строение физического вакуума. \ Границ биона указать невозможно (понятная аналогия с атмосферой Земли, границу которой точно определить не удасться), так как все переходы очень и очень плавные. Поэтому, внутреннего трения между бионами практически нет. Однако влияние такого "трения" становится заметным на больших расстояниях, и наблюдается нами как красное смещение. / Электрическое поле в общей теории взаимодействий. Существование в какой-либо области пространства электрического поля, будет представлять собой зону согласованно расположенных и определённым образом ориентированных бионов. b-i-o-n.ru/_mod_files/ce_image...Магнитное поле в общей теории взаимодействий. Магнитное поле будет представлять собой определённую динамическую конфигурацию расположения и движения бионов. b-i-o-n.ru/theory/elim/
Электрическое поле - область пространства, в которой физический вакуум имеет определённое упорядоченное строение. В присутствии электрического поля, вакуум оказывает силовое воздействие на пробный электрический заряд. Такое воздействие обусловлено расположением бионов в данной области пространства. К сожалению, в тайну того, как устроен электрический заряд, нам пока проникнуть не удалось. В остальном же, получается следующая картина. Любой заряд, пусть для примера он будет отрицательным, создаёт вокруг себя следующую ориентацию бионов - электростатическое поле. Основная часть энергии принадлежит заряду, имеющему определённые размеры. А энергия электрического поля является энергией упорядоченного расположения бионов (всякий порядок имеет энергетическую основу). Также ясно, как удалённые заряды «чувствуют» друг друга. Этими «чувствительными органами» являются ориентированные определённым образом бионы. Отметим и ещё один важный вывод. Скорость установления электрического поля определяется скоростью поворота бионов, чтобы они стали ориентированы по отношению к заряду так, как показано на рисунке. А это объясняет, почему скорость установления электрического поля равна скорости света: в обоих процессах бионы должны передать вращение друг другу. Сделав не трудный следующий шаг, можно с уверенностью говорить о том, что магнитное поле представляет собой следующую динамичную конфигурацию бионов. b-i-o-n.ru/theory/elim
Стоит обязательно отметить, что магнитное поле ничем не проявляет себя до тех пор, пока нет объектов, на которые оно способно воздействовать (стрелка компаса или электрический заряд). Принцип суперпозиции магнитного поля. Оси вращения бионов занимают промежуточное положение, в зависимости от направления и силы взаимодействующих полей. Действие магнитного поля на движущийся заряд. ' Магнитное поле не действует на покоящийся заряд, потому что вращающиеся бионы будут создавать колебания такого заряда, но такие колебания мы не сможем обнаружить ввиду их малости.
Удивительное дело, но ни в одном учебнике я не нашел не то, что ответа, а даже вопроса, который очевидно должен возникать у каждого, кто начинает изучать магнитные явления. Вот этот вопрос. Почему магнитный момент контура с током не зависит от формы этого контура, а зависит лишь от его площади? Я думаю, что такой вопрос не задаётся именно потому, что ответа на него никто не знает. При опоре же на наши представления ответ очевиден. Магнитное поле контура есть сумма магнитных полей бионов. А число бионов создающих магнитное поле, определяется площадью контура и не зависит от его формы." Если взглянуть шире, не вдаваясь в теории, магнит работает пульсацией магнитного поля. Благодаря этой пульсации, упорядоченности движения силовых частиц возникает общая сила, воздействующая на объекты окружения. Воздействие переносится магнитным полем, в котором также могут быть выделены частицы, кванты. Теория бионов выделяет элементарной частицей бион. Вы видите насколько она фундаментальна. Теория пространства гравитонов выделяет квантом всей вселенной гравитон. И даёт фундаментальные законы, управляющие вселенной. n-t.ru/tp/ns/tg.htm Теория пространства гравитонов "Диалектика развития науки состоит в количественном накоплении таких абстрактных понятий («демонов»), описывающих все новые и новые закономерности природы, которое на определенной стадии достигает критического уровня сложности. Разрешение же такого кризиса неизменно требует качественного скачка, глубокого пересмотра базовых понятий, снимающего «демоничность» с накопленных абстракций, раскрывающего их содержательную сущность на языке новой обобщающей теории. * ТПГ постулирует физическое (актуальное) существование транзитивного пространства, элементы которого в рамках этой теории называются гравитонами. * Т.е. мы предполагаем, что именно физическое пространство гравитонов (ПГ) обеспечивает всеобщую взаимосвязь физических объектов, доступных нашему познанию, и является той минимально необходимой субстанцией, без которой научное познание невозможно в принципе. * ТПГ постулирует дискретность и принципиальную неделимость гравитонов, отсутствие у них какой-либо внутренней структуры. Т.е. гравитон в рамках ТПГ выступает в роли абсолютной элементарной частицы, близкой в этом смысле атому Демокрита. В математическом же смысле гравитон является пустым множеством (null-set). * Главным и единственным свойством гравитона является его способность к самокопированию, порождающему новый гравитон. Это свойство задает на множестве ПГ отношение строгого несовершенного порядка: gi < gi+1, где gi – гравитон-родитель и gi+1 – дочерний гравитон, являющийся копией родителя. Это отношение интенсионально определяет ПГ как транзитивное и антирефлексивное множество, из чего следует также его асимметричность и антисимметричность. * ТПГ постулирует непрерывность и предельную плотность ПГ, заполняющего всю доступную познанию Вселенную таким образом, что любому физическому объекту в этой Вселенной может быть поставлено в соответствие непустое подмножество ПГ, однозначно определяющее положение этого объекта в ПГ, а значит и во Вселенной. * ПГ является метрическим пространством. В качестве естественной метрики ПГ может быть выбрано минимальное количество переходов от одного соседнего гравитона к другому, необходимое для замыкания транзитивной цепочки, связывающей пару гравитонов, расстояние между которыми мы при этом определяем. ' Свойства гравитона, позволяют нам говорить о квантовой природе этого понятия. Гравитон является квантом движения, реализующегося в акте копирования гравитоном самого себя и «рождения» нового гравитона. В математическом смысле этот акт можно поставить в соответствие добавлению единицы к уже имеющемуся натуральному числу. ' Другим следствием собственного движения ПГ являются резонансные явления, порождающие виртуальные элементарные частицы, в частности фотоны реликтового излучения. * Используя базовые понятия ТПГ, мы построили физическую модель пространства, которое не является пассивным вместилищем других физических объектов, но само активно изменяется и движется. К сожалению, никакие мыслимые приборы не дадут нам возможность напрямую исследовать активность ПГ, поскольку гравитоны пронизывают все объекты, взаимодействуя с самыми мельчайшими элементами их внутренней структуры. Тем не менее, мы можем получать содержательную информацию о движении гравитонов, исследуя закономерности и резонансные явления так называемого реликтового излучения, которое в наибольшей мере обусловлено именно активностью ПГ. * Природа гравитационного взаимодействия
«То, что гравитация должна быть внутренним, неотъемлемым и существенным атрибутом материи, позволяя тем самым любому телу действовать на другое на расстоянии через вакуум, без какого-либо посредника, с помощью которого и через которого действие и сила могли бы передаваться от одного тела к другому, представляется мне настолько вопиющей нелепостью, что, по моему глубокому убеждению, ни один человек, сколько-нибудь искушенный в философских материях и наделенный способностью мыслить, не согласится с ней». (из письма Ньютона Ричарду Бентли). ** В рамках ТПГ гравитация лишается своей силовой природы и полностью определяется именно как закономерность движения физических объектов, «связывающих» свободные гравитоны всем объемом своей внутренней структуры, поскольку гравитоны свободно пронизывают любой физический объект, являясь неотъемлемыми элементами его внутреннего устройства. Все физические объекты «поглощают» гравитоны, искажая изотропную пролиферацию ПГ, именно за счет этого достаточно близкие и массивные космические объекты образуют компактные скопления, успевая компенсировать расширение ПГ внутри скопления. Но сами эти скопления, разделенные такими объемами ПГ, пролиферацию которых они неспособны компенсировать, разлетаются тем быстрее, чем больше этот разделяющий их объем ПГ. Т.е. один и тот же механизм обусловливает как эффект «притяжения», так и эффект разлета галактик. *** Рассмотрим теперь подробнее механизм «поглощения» гравитонов физическими объектами. Интенсивность такого «поглощения» существенным образом зависит от внутренней структуры объектов и определяется наличием в этой структуре специфических конструкций, а также их количеством. Гравитационное «поглощение» свободного гравитона является простейшим и наиболее слабым из таких механизмов, не требующим никаких специальных структур, в акте такого «поглощения» участвует единственный гравитон. Любой другой тип взаимодействия использует соответствующие этому типу частицы взаимодействия, определенные на некотором подмножестве гравитонов, поэтому эффективность такого взаимодействия гораздо выше, в акте взаимодействия «поглощается» множество гравитонов вместе с определенной на них частицей. Отметим также, что при таких взаимодействиях один из объектов должен выступать в той же роли, в которой выступает ПГ при гравитационном взаимодействии, т.е. он должен порождать все новые и новые частицы данного взаимодействия, используя для такой активности те самые специфические структуры, о которых мы сказали выше. Таким образом, общая схема любого взаимодействия остается всегда одна и та же, а мощность взаимодействия определяется «объемом» частиц взаимодействия и активностью порождающего их источника." Можно понимать магнитное взаимодействие моделью порождения и поглощения элементарных частиц магнитного поля. Причём частицы обладают разной частотой, и поэтому слагается потенциальное поле, состоящее из уровней напряжённости, радуги. По этим уровням "плавают" частицы. Они могут быть поглощены другими частицами, например ионами кристаллической решётки некоторых металлов, но воздействие на них магнитного поля будет продолжаться. Металл притягивается к телу магнита. Теория Суперструн, несмотря на своё название, слагает ясную картину мира. Лучше: она выделяет в мире множество траекторий взаимодействия. ergeal.ru/other/superstrings.htm Теория Суперструн (Дмитрий Поляков) "Итак, струна - это своего рода первичное творение в видимой Вселенной.
Этот объект не материален, тем не менее, его можно представлять себе приближенно в виде некоей натянутой нити, веревки или, например, скрипичной струны, летающей в десятимерном пространстве-времени.
Летая в десятимерии, этот протяженный объект испытывает так же и внутренние вибрации. Из этих-то вибраций (или октав) и происходит вся материя (и, как выяснится далее, не только материя). Т.е. все разнообразие частиц в природе - это просто разные октавы одного итого же примордиального творения - струны. Хороший пример двух таких разных октав, происходящих от единой струны, - гравитация и свет (гравитоны и фотоны). Тут, правда, есть некоторые тонкости - необходимо различать спектры замкнутых и незамкнутых струн, но сейчас эти подробности приходится опускать.
Итак, как же изучать такой объект, как возникают десять измерений и как найти правильную компактификацию десятимерия до нашего четырехмерного мира?
Не имея возможности "поймать" струну, мы идем по ее следам и исследуем ее траекторию. Подобно тому, как траектория точки - кривая линия, траектория одномерного протяженного объекта (струны) это двумерная ПОВЕРХНОСТЬ.
Таким образом, математически теория струн - это динамика двумерных случайных поверхностей, вложенных в пространство высших измерений.
Каждая такая поверхность называется МИРОВЫМ ЛИСТОМ.
Вообще, во Вселенной необычайно важную роль играют всевозможные симметрии.
Из симметрии той или иной физической модели часто можно сделать важнейшие выводы о ее (модели) динамике, эволюции, мутации и т.д.
В Теории Струн такой краеугольной симметрией является т.н. РЕПАРАМЕТРИЗАЦИОННАЯ ИНВАРИАНТНОСТЬ (или "группа диффеоморфизмов"). Инвариантность эта, говоря очень грубо и приблизительно, означает следующее. Представим себе мысленно наблюдателя, "севшего" на один из мировых листов, "заметаемых" струной. В руках у него - гибкая линейка, с помощью которой он исследует геометрические свойства поверхности Мирового Листа. Так вот - геометрические свойства поверхности, очевидно, не зависят от градуировки линейки. Независимость структуры Мирового Листа от масштаба "мысленной линейки" и называется Репараметризационной Инвариантностью (или R-инвариантностью).
При кажущейся простоте этот принцип приводит к крайне важным последствиям. Прежде всего, справедлив ли он на квантовом уровне? ^ Духи - это поля (волны, вибрации, частицы), вероятность наблюдения которых отрицательна.
Для рационалиста это, конечно же, абсурд: ведь классическаявероятность любого события лежит всегда между 0 (когда событие наверняка не произойдет) и 1 (когда, напротив, оно произойдет наверняка).
Вероятность появления Духов, однако, отрицательна. Таково одно из возможных определений Духов. Апофатическое определение. В связи с этим мне вспоминается определение Любви Аввой Дорофеем: "Бог есть центр круга. А люди - радиусы. Возлюбив Бога, люди приближаются к Центру, как радиусы. Возлюбив друг друга, они приближаются к Богу, как к центру".
Итак, подведем первые итоги.
Мы познакомились с Наблюдателем, которого с линейкой сажают на Мировой Лист. И градуировка линейки, на первый взгляд, произвольна, а Мировой Лист к этому Произволу равнодушен.
Это Равнодушие (или симметрия) называется Репараметризационной Инвариантностью (R-инвариантностью, группой диффеоморфизмов).
Необходимость увязать Равнодушие с Неопределенностью приводит к выводу о десятимерности Вселенной.
На самом деле, все обстоит несколькосложнее.
С какой попало линейкой, да на Мировой Лист наблюдателя, конечно же, никто не пустит. Десятимерный мир светел, строг и никакой отсебятины не терпит. За любую отсебятину с Мировым Листом у подонка навсегда отобрали бы линейку и хорошо высекли бы, как протестанта. ^ Но если Наблюдатель не протестант, ему дают Линейку раз и навсегда определенную, выверенную, неизменную на века, и с этой строжайше отобранной Единственной Линейкой допускают на Мировой Лист.
В Теории Суперструн этот ритуал называется "фиксацией калибровки".
В результате фиксации калибровки и возникают Духи Фаддеева-Попова.
Именно эти Духи и вручают Наблюдателю Линейку.
Однако выбор калибровки - это всего лишь чисто экзотерическая, полицейская функция Духов Фаддеева-Попова. Экзотерическая, продвинутая миссия этих Духов состоит в выборе правильной компактификации и, впоследствии, в порождении солитонов и Хаоса в компактифицированном мире.
Как именно это происходит - вопрос очень тонкий и до конца не ясный; я постараюсь описать этот процесс как можно короче и нагляднее, опуская, насколько возможно, технические подробности.
Во всех обзорах по Теории Суперструн имеется т.н. Теорема об Отсутствии Духов. Эта Теорема гласит, что Духи, хотя и определяют выбор калибровки, тем не менее, никак не влияют непосредственно на вибрации струны (вибрации, порождающие материю). Иными словами, согласно теореме, спектр струны не содержит Духов, т.е. Пространство Духов полностью отделено от эманаций материи, а Духи - не более чем артифакт фиксации калибровки. Можно сказать, это Духи - следствие несовершенства наблюдателя, никак не связанное с динамикой струны. Это - классический результат, в ряде случаев более или менее верный. Однако применимость этой теоремы ограничена, т.к. все известные ее доказательства не учитывают одного крайне важного нюанса. Нюанс этот связан с т.н. "нарушением симметрии картин". Что это такое? Рассмотрим произвольную вибрацию струны: например, эманацию света (фотон). Оказывается, существует несколько различных способов описания этой эманации. А именно, в теории струн эманации описываются с помощью т.н. "вершинных операторов". Каждой эманации соответствует несколько предположительно эквивалентных вершинных операторов. Эти эквивалентные операторы отличаются друг от друга своими "духовыми числами", т.е. структурой Духов Фаддеева-Попова.
Каждое такое эквивалентное описание одной и той же эманации называется Картиной. Существует т.н. "conventional wisdom", настаивающая на равноценности Картин, т.е. вершинных операторов с различными духовыми числами. Это предположение известно как "picture-changing symmetry of vertex operators".
Эта "conventional wisdom" и подразумевается молчаливо при доказательстве Теоремы об Отсутствии. Однако более внимательный анализ показывает, что этой симметрии не существует (точнее, она существует в одних случаях и нарушается в других). Из-за нарушения Симметрии Картин нарушается в ряде случаев и упомянутая выше Теорема. А это значит - Духи играют непосредственную роль в вибрациях струны, пространства материи и Духов не независимы, но тончайшим образом переплетаются.
Пересечение этих пространств и играет важнейшую роль в динамической компактификации и формировании Хаоса. " Другое видение теории Суперструн elementy.ru/trefil/21211"Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории, объясняющей природу всего сущего. А это — своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная. Сегодня теорию струн удалось объединить с концепцией суперсимметрии, в результате чего родилась теория суперструн, и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил). ***** Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители — цементом. ***** В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия — калибровочные бозоны, которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов. Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия — например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно. ***** Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10–35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.
Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом — дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.
Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран — по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.
Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. " ru.wikipedia.org/wiki/%D0%A2%D... Теория Суперструн. Универсальная теория, объясняющая все физические взаимодействия: elementy.ru/trefil/21216"В природе действуют четыре фундаментальные силы, и все физические явления происходят в результате взаимодействий между физическими объектами, которые обусловлены одной или несколькими из этих сил. Четыре вида взаимодействий в порядке убывания их силы это:
* сильное взаимодействие, удерживающее кварки в составе адронов и нуклоны в составе атомного ядра; * электромагнитное взаимодействие между электрическими зарядами и магнитами; * слабое взаимодействие, которым обусловлены некоторые типы реакций радиоактивного распада; и * гравитационное взаимодействие.
В классической механике Ньютона любая сила — это всего лишь сила притяжения или отталкивания, вызывающая изменение характера движения физического тела. В современных квантовых теориях, однако, понятие силы (трактуемое теперь как взаимодействие между элементарными частицами) интерпретируется несколько иначе. Силовое взаимодействие теперь считается результатом обмена частицей-носителем взаимодействия между двумя взаимодействующими частицами. При таком подходе электромагнитное взаимодействие между, например, двумя электронами, обусловлено обменом фотоном между ними, и аналогичным образом обмен другими частицами-посредниками приводит к возникновению трех прочих видов взаимодействий. (Подробнее см. Стандартная модель.)
Более того, характер взаимодействия обусловлен физическими свойствами частиц-носителей. В частности, закон всемирного тяготения Ньютона и закон Кулона имеют одинаковую математическую формулировку именно потому, что в обоих случаях переносчиками взаимодействия являются частицы, лишенные массы покоя. Слабые взаимодействия проявляются лишь на исключительно малых расстояниях (по сути, лишь внутри атомного ядра), поскольку их носители — калибровочные бозоны — являются очень тяжелыми частицами. Сильные взаимодействия также проявляются лишь на микроскопических расстояниях, но по иной причине: здесь всё дело в «пленении кварков» внутри адронов и фермионов (см. Стандартная модель).
Оптимистичные ярлыки «универсальная теория», «теория всего сущего», «теория великого объединения», «окончательная теория» сегодня используются в отношении любой теории, пытающейся объединить все четыре взаимодействия, рассматривая их в качестве различных проявлений некоей единой и великой силы. Если бы это удалось, картина устройства мира упростилась бы до предела. Вся материя состояла бы лишь из кварков и лептонов (см. Стандартная модель), и между всеми этими частицами действовали бы силы единой природы. Уравнения, описывающие базовые взаимодействия между ними, были бы столь короткими и ясными, что уместились бы на почтовой открытке, описывая при этом, по сути, основу всех без исключения процессов, наблюдаемых во Вселенной. По словам нобелевского лауреата, американского физика-теоретика Стивена Вайнберга (Steven Weinberg, 1933–1996) «это была бы глубинная теория, от которой во все стороны стрелами расходилась интерференционная картина устройства мироздания, и более глубоких теоретических основ в дальнейшем не потребовалось бы». Как видно из сплошных сослагательных наклонений в цитате, такой теории до сих пор не существует. Нам остается лишь очертить примерные контуры процесса, который может привести к разработке столь всеобъемлющей теории. ~ Все теории объединения исходят из того, что при достаточно высоких энергиях взаимодействия между частицами (когда они имеют скорость, близкую к предельной скорости света), «лед тает», грань между различными видами взаимодействий стирается, и все силы начинают действовать одинаково. При этом теории предсказывают, что происходит это не одновременно для всех четырех сил, а поэтапно, по мере увеличения энергий взаимодействия.
Самый нижний энергетический порог, при котором может произойти первое слияние сил разных типов, крайне высок, однако находится уже в пределах досягаемости самых современных ускорителей. Энергии частиц на ранней стадии Большого взрыва были крайне высоки (см. также Ранняя Вселенная). В первые 10–10 с они обеспечивали объединение слабых ядерных и электромагнитных сил в электрослабое взаимодействие. Лишь начиная с этого момента окончательно разделились все четыре известных нам силы. До этого момента существовали всего три фундаментальные силы: сильного, электрослабого и гравитационного взаимодействий. ~ Следующее объединение происходит при энергиях далеко за пределами достижимых в условиях земных лабораторий — они существовали во Вселенной в первые 10e(–35) c ее существования. Начиная с этих энергий электрослабое взаимодействие объединяется с сильным. Теории, описывающие процесс такого объединения, называются теориями большого объединения (ТБО). Проверить их на экспериментальных установках невозможно, но они хорошо прогнозируют течение целого ряда процессов, протекающих при более низких энергиях, и это служит косвенным подтверждением их истинности. Однако на уровне ТБО наши возможности в плане проверки универсальных теорий исчерпываются. Далее начинается область теорий суперобъединения (ТСО) или всеобщих теорий — и при одном упоминании о них в глазах у физиков-теоретиков загорается блеск. Непротиворечивая ТСО позволила бы объединить гравитацию с единым сильно-электрослабым взаимодействием, и строение Вселенной получило бы простейшее из возможных объяснений." Отмечается поиск человека законов и формул, объясняющих все физические явления. Этот поиск объемлет микроуровневые процессы и макроуровневые. Они отличаются силой или энергией, которой происходит обмен. Взаимодействие на уровне магнитного поля описывается электромагнетизмом.
"Электромагнетизм*
- Начало учению об электромагнитных явлениях положено открытием Эрстеда. В 1820 г. Эрстед показал, что проволока, по которой течет электрический ток, вызывает отклонение магнитной стрелки. Он подробно исследовал это отклонение с качественной стороны, но не дал общего правила, по которому можно было бы определять направление отклонения в каждом отдельном случае. Вслед за Эрстедом открытия пошли одно за другим. Ампер (1820) опубликовал свои работы о действии тока на ток или тока на магнит. Амперу принадлежит общее правило для действия тока на магнитную стрелку: если вообразить себя расположенным в проводнике лицом к магнитной стрелке и притом так, чтобы ток имел направление от ног к голове, то северный полюс отклоняется влево. Далее мы увидим, что Ампер свел явления электромагнитные к явлениям электродинамическим (1823). К 1820 г. относятся также работы Араго, который заметил, что проволока, по которой течет электрический ток, притягивает к себе железные опилки. Он же намагнитил впервые железные и стальные проволоки, помещая их внутрь катушки медных проволок, по которым проходил ток. Ему же удалось намагнитить иглу, поместив ее в катушку и разрядив лейденскую банку через катушку. Независимо от Араго намагничивание стали и железа током было открыто Дэви.
Первые количественные определения действия тока на магнит точно так же относятся к 1820 г. и принадлежат Био и Савару. ) Если укрепить маленькую магнитную стрелку sn вблизи длинного вертикального проводника AB и астазировать земное поле магнитом NS (фиг. 1), то можно обнаружить следующее:
1. При прохождении тока через проводник магнитная стрелка устанавливается своей длиной под прямым углом к перпендикуляру, опущенному из центра стрелки на проводник.
2. Сила, действующая на тот или другой полюс n и s перпендикулярна к плоскости, проведенной через проводник и данный полюс
3. Сила, с которой действует на магнитную стрелку данный ток, проходящий по очень длинному прямолинейному проводнику, обратно пропорциональна расстоянию от проводника до магнитной стрелки.
Все эти наблюдения и другие могут быть выведены из следующего элементарного количественного закона, известного под именем закона Лапласа-Био-Савара:
dF = k(imSin θ ds)/r2, (1),
где dF - действие элемента тока на магнитный полюс; i - сила тока; m - количество магнетизма, θ - угол, составляемый направлением тока в элементе с линией, соединяющей полюс с элементом тока; ds - длина элемента тока; r -расстояние рассматриваемого элемента от полюса; k - коэффициент пропорциональности.
На основании закона действие равно противодействию, Ампер заключил, что магнитный полюс должен действовать на элемент тока с такой же силой
dФ = k(imSin θ ds)/r2, (2)
прямо противоположной по направлению силе dF, точно также действующей по направлению, составляющему прямой угол с плоскостью, проходящей через полюс и данный элемент. Хотя выражения (1) и (2) хорошо согласуются с опытами, тем не менее на них приходится смотреть не как на закон природы, а как на удобное средство описывать количественную сторону процессов. Главная причина этого в том, что мы не знаем никаких токов, кроме замкнутых, и, следовательно, допущение элемента тока в сущности неправильно. Далее, если мы прибавим к выражениям (1) и (2) какие-нибудь функции, ограниченные только условием, что интеграл их по замкнутому контуру равен нулю, то согласие с опытами будет не менее полное.
Все факты вышеуказанные приводят к выводу, что электрический ток вызывает вокруг себя магнитное поле. Для магнитной силы этого поля должны быть справедливы все законы, справедливые для магнитного поля вообще. В частности, вполне уместно введением понятия о силовых линиях магнитного поля, вызываемого электрическим током. Направление силовых линий в этом случае может быть обнаружено обычным способом при посредстве железных опилок. Если пропустить вертикальную проволоку с током через горизонтальный лист картона и насыпать на картон опилок, то при легком постукивании опилки расположатся концентрическими кругами, если только проводник достаточно длинен. ) Так как силовые линии вокруг проволоки замыкаются и так как силовая линия определяет путь, по которому двигалась бы единица магнетизма в данном поле, то ясно, что можно вызвать вращение магнитного полюса вокруг тока. Первый прибор, в котором подобное вращение было осуществлено, был построен Фарадеем. Очевидно, что по силе магнитного поля можно судить о силе тока. К этому вопросу мы сейчас и подойдем.
Рассматривая магнитный потенциал очень длинного прямолинейного тока, мы легко можем доказать, что этот потенциал многозначен. В данной точке он может иметь бесконечно большое число различных значений, разнящихся одно от другого на 4 kmi π , где k - коэффициент, остальные буквы известны. Этим и объясняется возможность непрерывного вращения магнитного полюса вокруг тока. 4 kmi π и есть работа, совершаемая при одном обороте полюса; она берется за счет энергии источника тока. Особый интерес представляет случай замкнутого тока. Замкнутый ток мы можем себе представить в виде петли, сделанной на проволоке, по которой течет ток. Петля имеет произвольную форму. Два конца петли свернуты в жгут (шнур) и идут к далеко поставленному элементу.
vorum.ru
Когда магнит притягивает к себе металлические предметы, это кажется волшебством, но в действительности «волшебные» свойства магнитов связаны всего лишь с особой организацией их электронной структуры. Поскольку электрон, вращающийся вокруг атома, создает магнитное поле, все атомы являются маленькими магнитами; однако в большинстве веществ неупорядоченные магнитные эффекты атомов уравновешивают друг друга.
По иному дело обстоит в магнитах, атомные магнитные поля которых выстраиваются в упорядоченные области, называющиеся доменами. Каждая такая область имеет северный и южный полюс. Направление и интенсивность магнитного поля характеризуется так называемыми силовыми линиями {на рисунке показаны зеленым цветом), которые выходят из северного полюса магнита и входят в южный. Чем гуще силовые линии, тем концентрированнее магнетизм. Северный полюс одного магнита притягивает южный полюс другого, в то время как два одноименных полюса отталкивают друг друга. Магниты притягивают только определенные металлы, главным образом железо, никель и кобальт, называющиеся ферромагнетиками. Хотя ферромагнетики и не являются естественными магнитами, их атомы перестраиваются в присутствии магнита таким образом, что у ферромагнитных тел появляются магнитные полюса.
Касание конца магнита к металлическим скрепкам приводит к возникновению у каждой скрепки северного и южного полюса. Эти полюса ориентируются в том же направлении, что и у магнита. Каждая скрепка стала магнитом.
Некоторые металлы имеют кристаллическую структуру, образованную атомами, сгруппированными в магнитные домены. Магнитные полюса доменов обычно имеют различное направление (красные стрелки) и не оказывают суммарного магнитного воздействия.
information-technology.ru
Наряду с электризующимися трением кусочками янтаря постоянные магниты были для древних людей первым материальным свидетельством электромагнитных явлений (молнии на заре истории определенно относили к сфере проявления нематериальных сил). Объяснение природы ферромагнетизма всегда занимало пытливые умы ученых, однако и в настоящее время физическая природа постоянной намагниченности некоторых веществ, как природных, так и искусственно созданных, еще не до конца раскрыта, оставляя немалое поле деятельности для современных и будущих исследователей.
Они стали активно использоваться в промышленности, начиная с 1940 года с появления сплава алнико (AlNiCo). До этого постоянные магниты из различных сортов стали применялись лишь в компасах и магнето. Алнико сделал возможным замену на них электромагнитов и применение их в таких устройствах, как двигатели, генераторы и громкоговорители.
Это их проникновение в нашу повседневную жизнь получило новый импульс с созданием ферритовых магнитов, и с тех пор постоянные магниты стали обычным явлением.
Революция в магнитных материалах началась около 1970 года, с созданием самарий-кобальтового семейства жестких магнитных материалов с доселе невиданной плотностью магнитной энергии. Затем было открыто новое поколение редкоземельных магнитов на основе неодима, железа и бора с гораздо более высокой плотностью магнитной энергии, чем у самарий-кобальтовых (SmCo) и с ожидаемо низкой стоимостью. Эти две семьи редкоземельных магнитов имеют такие высокие плотности энергии, что они не только могут заменить электромагниты, но использоваться в областях, недоступных для них. Примерами могут служить крошечный шаговый двигатель на постоянных магнитах в наручных часах и звуковые преобразователи в наушниках типа Walkman.
Постепенное улучшение магнитных свойств материалов представлено на диаграмме ниже.
Они представляют новейшее и наиболее значительное достижение в этой области на протяжении последних десятилетий. Впервые об их открытии было объявлено почти одновременно в конце 1983 года специалистами по металлам компаний Sumitomo и General Motors. Они основаны на интерметаллическом соединении NdFeB: сплаве неодима, железа и бора. Из них неодим является редкоземельным элементом, добываемым из минерала моназита.
Огромный интерес, которые вызвали эти постоянные магниты, возникает потому, что в первый раз был получен новый магнитный материал, который не только сильнее, чем у предыдущего поколения, но является более экономичным. Он состоит в основном из железа, которое намного дешевле, чем кобальт, и из неодима, являющегося одним из наиболее распространенных редкоземельных материалов, запасы которого на Земле больше, чем свинца. В главных редкоземельных минералах моназите и бастанезите содержится в пять-десять раз больше неодима, чем самария.
Чтобы объяснить функционирование постоянного магнита, мы должны заглянуть внутрь его до атомных масштабов. Каждый атом имеет набор спинов своих электронов, которые вместе формируют его магнитный момент. Для наших целей мы можем рассматривать каждый атом как небольшой полосовой магнит. Когда постоянный магнит размагничен (либо путем нагрева его до высокой температуры, либо внешним магнитным полем), каждый атомный момент ориентирован случайным образом (см. рис. ниже) и никакой регулярности не наблюдается.
Когда же он намагничен в сильном магнитном поле, все атомные моменты ориентируются в направлении поля и как бы сцепляются «в замок» друг с другом (см. рис. ниже). Это сцепление позволяет сохранить поле постоянного магнита при удалении внешнего поля, а также сопротивляться размагничиванию при изменении его направления. Мерой силы сцепления атомных моментов является величина коэрцитивной силы магнита. Подробнее об этом позже.
При более глубоком изложении механизма намагничивания оперируют не понятиями атомных моментов, а используют представления о миниатюрных (порядка 0,001 см) областях внутри магнита, изначально обладающих постоянной намагниченностью, но ориентированных при отсутствии внешнего поля случайным образом, так что строгий читатель при желании может отнести вышеизложенный физический механизм не к магниту в целом. а к отдельному его домену.
Атомные моменты суммируются и образуют магнитный момент всего постоянного магнита, а его намагниченность M показывает величину этого момента на единицу объема. Магнитная индукция B показывает, что постоянный магнит является результатом внешнего магнитного усилия (напряженности поля) H, прикладываемого при первичном намагничивании, а также внутренней намагниченности M, обусловленной ориентацией атомных (или доменных) моментов. Ее величина в общем случае задаётся формулой:
B = µ0 (H + M),
где µ0 является константой.
В постоянном кольцевом и однородном магните напряженность поля H внутри него (при отсутствии внешнего поля) равна нулю, так как по закону полного тока интеграл от нее вдоль любой окружности внутри такого кольцевого сердечника равен:
H∙2πR = iw=0 , откуда H=0.
Следовательно, намагниченность в кольцевом магните:
M= B/µ0.
В незамкнутом магните, например, в том же кольцевом, но с воздушным зазором шириной lзаз в сердечнике длиной lсер, при отсутствии внешнего поля и одинаковой индукции B внутри сердечника и в зазоре по закону полного тока получим:
Hсер l сер + (1/ µ0)Blзаз = iw=0.
Поскольку B = µ0(Hсер + Мсер), то, подставляя ее выражение в предыдущее, получим:
Hсер(l сер + lзаз) + Мсер lзаз=0,
или
Hсер = ─ Мсер lзаз(l сер + lзаз).
В воздушном зазоре:
Hзаз = B/µ0,
причем B определяется по заданной Мсер и найденной Hсер.
Начиная с ненамагниченного состояния, когда Н увеличивается от нуля, вследствие ориентации всех атомных моментов по направлению внешнего поля быстро увеличиваются М и B, изменяясь вдоль участка «а» основной кривой намагничивания (см. рисунок ниже).
Когда выровнены все атомные моменты, М приходит к своему значению насыщения, и дальнейшее увеличение В происходит исключительно из-за приложенного поля (участок b основной кривой на рис. ниже). При уменьшении внешнего поля до нуля индукция В уменьшается не по первоначальному пути, а по участку «c» из-за сцепления атомных моментов, стремящегося сохранить их в том же направлении. Кривая намагничивания начинает описывать так называемую петлю гистерезиса. Когда Н (внешнее поле) приближается к нулю, то индукция приближается к остаточной величине, определяемой только атомными моментами:
Вr = μ0 (0 + Мг).
После того как направление H изменяется, Н и М действуют в противоположных направлениях, и B уменьшается (участок кривой «d» на рис.). Значение поля, при котором В уменьшается до нуля, называется коэрцитивной силой магнита BHC. Когда величина приложенного поля является достаточно большой, чтобы сломать сцепление атомных моментов, они ориентируются в новом направлением поля, а направление M меняется на противоположное. Значение поля, при котором это происходит, называется внутренней коэрцитивной силой постоянного магнита МНC. Итак, есть две разных, но связанных коэрцитивных силы, связанных с постоянным магнитом.
На рисунке ниже показаны основные кривые размагничивания различных материалов для постоянных магнитов. Из него видно, что наибольшей остаточной индукцией Br и коэрцитивной силой (как полной, так и внутренней, т. е. определяемой без учета напряженности H, только по намагниченности M) обладают именно NdFeB-магниты.
Магнитные поля постоянных магнитов можно рассматривать как поля некоторых связанных с ними токов, протекающих по их поверхностям. Эти токи называют амперовскими. В обычном смысле слова токи внутри постоянных магнитов отсутствуют. Однако, сравнивая магнитные поля постоянных магнитов и поля токов в катушках, французский физик Ампер предположил, что намагниченность вещества можно объяснить протеканием микроскопических токов, образующих микроскопические же замкнутые контуры. И действительно, ведь аналогия между полем соленоида и длинного цилиндрического магнита почти полная: имеется северный и южный полюс постоянного магнита и такие же полюсы у соленоида, а картины силовых линий их полей также очень похожи (см. рисунок ниже).
Представим себе, что весь объем некоторого стержневого постоянного магнита (с произвольной формой поперечного сечения) заполнен микроскопическими амперовскими токами. Поперечный разрез магнита с такими токами показан на рисунке ниже. Каждый из них обладает магнитным моментом. При одинаковой ориентации их по направлению внешнего поля они образуют результирующий магнитный момент, отличный от нуля. Он и определяет существование магнитного поля при кажущемся отсутствии упорядоченного движения зарядов, при отсутствии тока через любое сечение магнита. Легко также понять, что внутри него токи смежных (соприкасающихся) контуров компенсируются. Нескомпенсированными оказываются только токи на поверхности тела, образующие поверхностный ток постоянного магнита. Плотность его оказывается равной намагниченности M.
Известна проблема создания бесконтактной синхронной машины. Традиционная ее конструкция с электромагнитным возбуждением от полюсов ротора с катушками предполагает подвод тока к ним через подвижные контакты – контактные кольца со щетками. Недостатки такого технического решения общеизвестны: это и трудности в обслуживании, и низкая надежность, и большие потери в подвижных контактах, особенно если речь идет о мощных турбо- и гидрогенераторах, в цепях возбуждения которых расходуется немалая электрическая мощность.
Если сделать такой генератор на постоянных магнитах, то проблема контакта сразу же уходит. Правда, появляется проблема надежного крепления магнитов на вращающемся роторе. Здесь может пригодиться опыт, накопленный в тракторостроении. Там уже давно применяется индукторный генератор на постоянных магнитах, расположенных в пазах ротора, залитых легкоплавким сплавом.
В последние десятилетия широкое распространение получили вентильные двигатели постоянного тока. Такой агрегат представляет собой собственно электродвигатель и электронный коммутатор его обмотки якоря, выполняющий функции коллектора. Электродвигатель представляет собой синхронный двигатель на постоянных магнитах, расположенных на роторе, как и на рис. выше, с неподвижной обмоткой якоря на статоре. Электронный коммутатор схемотехнически представляет собой инвертор постоянного напряжения (или тока) питающей сети.
Основным преимуществом такого двигателя является его бесконтактность. Специфическим его элементом является фото-, индукционный или холловский датчик положения ротора, управляющий работой инвертора.
www.syl.ru
Силовые поля представляют собой особый вид материи, одной из разновидностей является магнитное поле. О его действии знает практически каждый человек. Ведь кто не сталкивался с обычными постоянными магнитиками? Вряд ли найдётся такой человек в современном обществе. А знаете ли вы, что именно наделяет магниты их специфическим действием? Думаю, не многим это известно. Предлагая сделать небольшой теоретическое путешествие в устройство и принцип действия постоянного магнита, и наконец разобраться, что же там такое происходит, почему это работает именно таким образом.
Действие магнитного поля лежит в основе электрофизики. Как известно, любые вещества состоят из атомов. Они находятся на очень близком расстоянии друг к другу. В зависимости от жёсткости соединения между собой различают три базовых агрегатных состояния — твёрдое, жидкое и газообразное. Именно в твёрдом состоянии вещества атомы максимально плотно и жёстко прикреплены друг у другу, что составляет в целом кристаллическую решётку того или иного вещества. Также известно, что атомы состоят из более мелких частиц, которые своим строением похожи на солнечную систему (в центре располагается солнце-атом, а вокруг него вращаются электроны-планеты). Между частицами атома также существуют поля.
Ну со строением вещества разобрались, а где тут действие магнитного поля, спросите вы. А оно имеет хитрый принцип действия. Основы физики утверждают, что магнитное поле возникает вокруг движущихся заряженных частиц (электронов, ионов). Каждый атом содержит определённое количество электронов на своих орбитах, они быстро вращаются вокруг ядра атома. Следовательно вокруг каждого атома существует магнитное поле. Но если все вещества состоят из атомов, то почему далеко не все вещества обладают магнитными свойствами? Потому, что именно некоторые вещества в твёрдом состоянии обладают особенностью перенаправлять и запоминать вектор направленности магнитного поля.
Итак, в изначальном состоянии тела (обладающее магнитными свойствами) внутренние векторы направления магнитных полей атомов располагаются хаотичным образом, что ведёт к взаимной нейтрализации общего действия магнитного поля. А вот если внешним мощным постоянным магнитным полем одновременно развернуть все внутренние составляющие магнитных полей, то в результате мы получим действие магнитного поля, которое будет уже однонаправленным.
Проще говоря, вещества, обладающие магнитными свойствами, могут запоминать направление магнитных полей, которые исходят от внутренних элементарных частиц. Если в изначальном состоянии внутренние магнитные поля направлены хаотично, компенсируя друг друга, то при мощном воздействии внешнего магнитного поля все внутренние поля перестраиваются в одном направлении (оставаясь в нём постоянно).
Если до воздействия внешнего магнитного поля вещество не магнитило к себе металлические предметы, то после этого оно уже само стало постоянным магнитом. Действие магнитного поля стало проявляться в силу обычной внутренней перестройки элементарных частиц.
Данное явление имеет и обратный процесс. А именно, получившийся постоянный магнит можно вернуть обратно в исходное состояние (оно обратно утратит способность магнитить). Для этого лишь надо перестроить в хаотичный порядок внутреннюю структуру магнетика. Вещество можно сильно нагреть, подвергнуть воздействию механических ударов, поместить в переменное электромагнитное поле и т.д.
P.S. Помимо обычного развлечения магниты имеют огромную область своего использования. Если в доме постоянные магнитики используются для крепления записок на холодильник, то в технике они стоят в основе многих электротехнических систем и устройств (постоянные двигатели, генераторы, электромеханические измерительные устройства и т.д.).
electrohobby.ru
15.04.2017 18:46 1323
Что такое магнит и зачем он нужен.
У тебя дома, на дверце холодильника наверняка есть красивые картинки, которые называют магнитиками. А почему они так называются? Правильно, потому что держаться на холодильнике они за счет магнита, который закреплен на из задней стороне.
Но магнит используют не только для того, чтобы крепить картинки к холодильнику. Интересно узнать для чего еще? Мы об этом расскажем. Но сначала поговорим о том, что он, магнит, вообще из себя представляет.
Самое известное его свойство, это способность притягивать к себе металлические предметы - скрепки, гвозди, иголки, да в принципе что угодно, главное чтоб это было сделано из металла. Происходит это при помощи силы, которая называется магнетизм.
Каждый магнит имеет два конца, называемых северным и южным полюсами. Северный полюс одного магнита притягивает южный полюс другого и тогда оба они примагничиваются. Кстати, наша планета Земля тоже гигантский магнит, имеющий два полюса, которые расположены вверху и внизу планеты.
Существует три основных вида магнитов - постоянные; временные; и электромагниты. Ты наверное хочешь спросить откуда они берутся?
Постоянные магниты делают из природных материалов,таких как железо, керамика, кобальт и т.д.
Временные магниты, это те, которые имеют свои магнетические (притягивающие) свойства только в близи от постоянных магнитов. Таким образом временными магнитами могут считаться любые металические предметы - ножницы, скрепки, булавки и т.д
Электромагнит представляет собой катушку,на которуютуго намотана металическая проволока. Работает такой магнит только в том случае, если по намотанному на катушку проводу проходит электрический ток и наделяет его, магнетическими, притягивающими свойствами.
Притягивающая сила электромагнита зависит от изменения величины и направления проходящего по проводу электрического тока.То есть чем мощнее ток, тем сильнее магнит притягивает. Однако электромагнит способен работать только в том случае, если подключено электричество. Как только электричество отключается, он теряет свою силу.
Магниты, это очень полезная штука. К примеру они нужны для того, чтобы дверцы наших холодильников плотно закрывались. Или чтобы не проколовшись собрать рассыпавшиеся по полу иголки.
А огромные магниты используют на разных заводах. Их закрепляют на подьемном кране и благодаря этому перемещают тяжелые металические детали.
Стрелка компаса – это тоже крохотный магнитик, поэтому она всегда указывает в сторону Северного полюса. С помощью компаса люди находят путь в любом части Земли. Ими пользуются не только на земле, но также на самолётах и кораблях.
Чтобы понять как работают магнитные полюса, можно провести простой опыт: взяв в руки два магнита попробуй прижать их один к другому.
Разные полюса (север и юг) притягиваются друг к другу. А одинаковые (север и север или юг и юг) отталкиваются друг от друга. Ты это почувствуешь, когда начнешь приближать магниты друг к другу.
Также, в домашних условиях можно провести еще один интересный эксперимент, который называется «Плавучий компас». Для этого возьми (вернее попроси у мамы) обыкновенную швейную иглу и намагнить её.
Как это сделать? Чтобы наделить иголку свойствами магнита, нужно примерно 50 раз провести по ней магнитом в одном и том же направлении. После этого, воткни иголку в кусочек пробки. Опусти пробку в миску с водой.
Вот и все. Когда иголка успокоится, ты увидишь, что она всегда направлена только в одну сторону – на север.
yznavaika.ru