Атмосферное давление — давление атмосферы на все находящиеся в ней предметы и Земную поверхность. Атмосферное давление создаётся гравитационным притяжением воздуха к Земле. Атмосферное давление измеряется барометром. Нормальным атмосферным давлением называют давление на уровне моря при температуре 15 °C. Оно равно 760 мм рт.ст. (Международная стандартная атмосфера — МСА, 101 325 Па).
Наличие атмосферного давления привело людей в замешательство в 1638 году, когда не удалась затея герцога Тосканского украсить сады Флоренции фонтанами — вода не поднималась выше 10,3 метров. Поиски причин этого и опыты с более тяжелым веществом — ртутью, предпринятые Эванджелистой Торричелли привели к тому, что в 1643 он доказал, что воздух имеет вес[1]. Совместно с В. Вивиани, Торричелли провёл первый опыт по измерению атмосферного давления, изобретя трубку Торричелли (первый ртутный барометр) — стеклянную трубку, в которой нет воздуха. В такой трубке ртуть поднимается на высоту около 760 мм[2].
На земной поверхности атмосферное давление изменяется от места к месту и во времени. Особенно важны определяющие погоду непериодические изменения атмосферного давления, связанные с возникновением, развитием и разрушением медленно движущихся областей высокого давления (антициклонов) и относительно быстро перемещающихся огромных вихрей (циклонов), в которых господствует пониженное давление. Отмечены колебания атмосферного давления на уровне моря в пределах 641 — 816 мм рт. ст.[3] (внутри смерча давление падает и может достигать значения 560 мм ртутного столба)[4].
Атмосферное давление уменьшается по мере увеличения высоты, поскольку оно создаётся лишь вышележащим слоем атмосферы. Зависимость давления от высоты описывается т. н. барометрической формулой.
На картах давление показывается с помощью изобар — изолиний, соединяющих точки с одинаковым приземным атмосферным давлением, обязательно приведенным к уровню моря.
Атмосферное давление — очень изменчивый метеоэлемент. Из его определения следует, что оно зависит от высоты соответствующего столба воздуха, его плотности, от ускорения силы тяжести, которая меняется от широты места и высоты над уровнем моря.
1 гПа = 0,75 мм рт. ст. Или 1 мм рт. ст. = 1,333 гПа (133,322 Па). |
В химии стандартным атмосферным давлением с 1982 года по рекомендации IUPAC считается давление ровно 100 кПа[5]. атмосферное давление является одной из наиболее существенных характеристик состояния атмосферы. В покоящейся атмосфере давление в любой точке равно весу вышележащего столба воздуха с единичным сечением.
В системе СГС 760 мм рт. ст. эквивалентно 1013,25 мб. Основной единицей давления в системе СИ, служит паскаль [Па]; 1 Па= 1 Н/м2. В системе СИ давление 1013,25 мб эквивалентно 101325 Па или 101.3 кПа или 0,1 МПа
Уравнение статики выражает закон изменения давления с высотой: -∆p=gρ∆z, где: p — давление, g — ускорение свободного падения, ρ — плотность воздуха, ∆z — толщина слоя. Из основного уравнения статики следует, что при увеличении высоты (∆z>0) изменение давления отрицательное, то есть давление уменьшается. Основное уравнение статики применимо только для очень тонкого (бесконечно тонкого) слоя воздуха ∆z.
Высота, на которую надо подняться или опуститься, чтобы давление изменилось на 1 гПа (гектопаскаль), называется барической (барометрической) ступенью. Барической ступенью удобно пользоваться при решении задач, не требующих высокой точности, например для оценки давления по известной разности высот. Из основного закона статики барическая ступень (h) равна: h=-∆z/∆p=1/gρ [м/гПа]. При температуре воздуха 0 °C и давлении 1000 гПа, барическая ступень равна 8 м/гПа. Следовательно, чтобы давление уменьшилось на 1 гПа нужно подняться на 8 метров.
С ростом температуры и увеличением высоты над уровнем моря она возрастает (в частности, на 0,4 % на каждый градус нагревания), то есть она прямо пропорциональна температуре и обратно пропорциональна давлению. Величина, обратная барической ступени, — вертикальный барический градиент, то есть изменение давления при поднятии или опускании на 100 метров. При температуре 0 °C и давлении 1000 гПа он равен 12,5 гПа.
Приведение давления к уровню моря производится на всех метеостанциях, посылающих синоптические телеграммы. Чтобы давление было сравнимо на станциях, расположенных на разных высотах, на синоптические карты наносится давление, приведённое к единой эталонной отметке — уровню моря. При приведении давления к уровню моря используют сокращенную формулу Лапласа: z2-z1=18400(1+λt)lg(p1/p2). То есть, зная давление и температуру на уровне z2 можно найти давление (p1) на уровне моря (z1=0).
Вычисление давления на высоте h по давлению на уровне моря Po и температуре воздуха T:
где Po — давление Па на уровне моря [Па]; M — молярная масса сухого воздуха 0,029 [кг/моль]; g — ускорение свободного падения 9,81 [м/с²]; R- универсальная газовая постоянная 8,31 [Дж/моль К]; T — абсолютная температура воздуха [К], T = t + 273, где t — температура в °C; h — высота [м].
На небольших высотах каждые 12 м подъёма уменьшают атмосферное давление на 1 мм рт.ст. На больших высотах эта закономерность нарушается[1].
Все тела во Вселенной имеют свойство притягиваться друг к другу. Крупные и массивные обладают более высокой силой притяжения по сравнению с мелкими. Этот закон присущ и нашей планете.Земля притягивает к себе любые объекты, которые на ней находятся, в том числе окружающую ее газовую оболочку – атмосферу. Хотя воздух намного легче планеты, он имеет большой вес и давит на всё, что находится на земной поверхности. Таким образом возникает атмосферное давление.
Под атмосферным давлением понимают гидростатическое давление газовой оболочки на Землю и расположенные на ней объекты. На разной высоте и в различных уголках земного шара оно имеет различные показатели, но на уровне моря стандартным принято считать 760 мм ртутного столба.
Это означает, что на квадратный сантиметр любой поверхности оказывает давление воздушный столб массой 1,033 кг. Соответственно, на квадратный метр приходится давление более чем в 10 тонн.
Решив выяснить причину подобного явления, он обратился за помощью к итальянскому математику Торричелли, который путем опытов и анализа определил, что воздух имеет вес.
Атмосферное давление – один из важнейших параметров газовой оболочки Земли. Поскольку в разных местах оно различается, для его замеров используют специальное устройство – барометр. Обычный бытовой прибор представляет собой металлическую коробку с основанием из гофры, в которой напрочь отсутствует воздух.
При росте давления эта коробка сжимается, а при снижении давления, напротив, расширяется. Вместе с движением барометра двигается прикрепленная к нему пружинка, которая оказывает влияние на стрелку на шкале.
На метеорологических станциях используют жидкостные барометры. В них давление измеряют по высоте ртутного столбика, заключенного в стеклянную трубку.
Поскольку атмосферное давление создается вышележащими пластами газовой оболочки, по мере повышения высоты оно изменяется. На него могут оказывать влияние как плотность воздуха, так и высота самого воздушного столба. Кроме того, давление меняется в зависимости от места на нашей планете, так как разные районы Земли расположены на различных высотах над уровнем моря.Время от времени над земной поверхностью создаются медленно передвигающиеся области повышенного или пониженного давления. В первом случае они носят название антициклоны, во втором – циклоны. В среднем показатели давления на уровне моря варьируются от 641 до 816 мм ртутного столба, хотя внутри торнадо могут опускаться до 560 мм.
Распределение атмосферного давления по Земле является неравномерным, что связано, в первую очередь, с движением воздуха и его способностью создавать так называемые барические вихри.
В северном полушарии вращение воздуха по часовой стрелке приводит к образованию нисходящих воздушных потоков (антициклонов), которые приносят в конкретную местность ясную либо малооблачную погоду с полным отсутствием дождя и ветра.
Если воздух вращается против часовой стрелки, то над землей образуются восходящие вихри, характерные для циклонов, с сильными осадками, шквальными ветрами, грозами. В южном полушарии циклоны движутся по часовой стрелке, антициклоны – против нее.
На каждого человека давит воздушный столб массой от 15 до 18 тонн. В иных ситуациях такой вес мог бы раздавить всё живое, но давление внутри нашего организма равняется атмосферному, поэтому при нормальных показателях в 760 мм ртутного столба мы не испытываем никакого дискомфорта.Если же атмосферное давление выше или ниже нормы, некоторые люди (особенно пожилые или больные) чувствуют недомогание, головную боль, отмечают обострение хронических болезней.
Чаще всего неприятные ощущения человек испытывает на больших высотах (например, в горах), поскольку в таких районах давление воздуха ниже, чем на уровне моря.
www.vseznaika.org
Всем известно, что формула для расчёта давления жидкости выглядит следующим образом: р=ρgh, где р - давление жидкости на дно сосуда, ρ - плотность воды, g - сила тяжести, действующая на 1кг, h - высота столба жидкости.
Но чтобы рассчитать по этой формуле атмосферное давление, нам нужно знать высоту атмосферы и плотность воздуха. Поскольку, у атмосферы определённой границы не существует, расчёт атмосферного давления по этой формуле невозможен.
Но как же его тогда измерить? В этом нам помог итальянский учёный, который учился у Галилея, Эванджелиста Торричелли. Он провёл опыт, где взял стеклянную, запаянную с одного конца, трубку длиной примерно 1м и заполнил её ртутью. Другой конец трубки заткнули.
Трубку опустили заткнутым концом в чашу и открыли её, вследствие чего часть ртути вылилась в чашу. Высота столба ртути получилась примерно 760 мм. В промежутке между вершиной столба ртути и концом трубки безвоздушное пространство.
Но казалось бы, при чём тут атмосферное давление? А вот при чём: атмосфера давит на поверхность ртути, в то время как ртуть находится в равновесии. Из этого следует, что давление ртути в трубке на уровне поверхности ртути в чаше равняется атмосферному.
Если оного больше, то ртуть будет выливаться из трубки, если меньше - то ртуть из чаши будет переходить в трубку. из этого опыта следует, что атмосферное давление равняется давлению ртути в трубке (р атм = р ртути).
Теперь, измерив высоту столба ртути, мы можем посчитать атмосферное давление, которое будет равно: плотность ртути умноженную на силу тяжести, действующая на 1кг умноженную на высоту столба ртути. Это и будет атмосферное давление.
Так как в опыте Торричелли чем выше атмосферное давление, тем выше столб ртути в трубке, стало принято измерять атмосферное давление в миллиметрах ртутного столба (мм рт. ст.). Если давление будет 760 мм рт. ст., то высота столба ртути в трубке будет равна 760мм соответственно.
Проведём параллель с известной нам единицей измерения давления - паскалем (Па). Итак, давление 1 мм рт. ст. равняется...
р = gρh, p = 9,8 Н/кг * 13600 кг/м^3 * 0,001м ≈ 133,3 Па.
...равняется 133,3 Па, где 9,8 Н/кг - сила тяжести, действующая на 1кг 13600 кг/м^3 - плотность (ρ) ртути, а 0,001 м - 1 миллиметр ртутного столба.
В сводках погоды можно услышать, что атмосферное давление равно 1030 гектопаскалям (1030 гПа). Это то же самое, что и 760 мм рт. ст. и является нормальным атмосферным давлением.
Не секрет, что атмосферное давление нестабильно и меняется на протяжение дня. Зачастую, это происходит от изменения погоды.
Сейчас никто не измеряет линейкой высоту столба ртути в трубке. Для измерения атмосферного давления используют ртутный барометр (от греч. барос - тяжесть и метро - измерять). Самый простейший ртутный барометр получится, если к трубке с ртутью, которая использовалась в опыте Торричелли, прикрепить вертикальную измерительную шкалу.
Все неприличные комментарии будут удаляться.
www.nado5.ru
Вес воздуха обусловливает атмосферное давление (1 м3 воздуха весит 1,033 кг). На каждый метр земной поверхности воздух давит с силой 10033 кг. Это столб воздуха от уровня моря до верхних слоев атмосферы. Для сравнения: столб воды такого же диаметра имел бы высоту всего 10 м. Иначе говоря, собственная масса воздуха создает атмосферное давление, величина которого на единицу площади соответствует массе находящегося над нею воздушного столба. При этом уменьшение воздуха в этом столбе приводит к уменьшению (падению) давления, а увеличение воздуха — к увеличению (росту) давления. За нормальное атмосферное давление принято давление воздуха на уровне моря на широте 45° и при температуре 0°С. В этом случае атмосфера давит на каждый 1 см2 земной поверхности с силой 1,033 кг, а масса этого воздуха уравновешивается ртутным столбиком высотой 760 мм. На этой зависимости построен принцип измерения давления. Оно измеряется в миллиметрах (мм) ртутного столба (или в миллибарах (мб): 1 мб = 0,75 мм ртутного столба) и в гектопаскалях (гПа), когда 1 мм = = 1 гПа.
Давление атмосферы измеряется при помощи барометров. Существуют два типа барометров: ртутный и металлический (или анероид).
Ртутный чашечный барометр состоит из запаянной сверху стеклянной трубки, погруженной нижним открытым концом в металлическую чашку с ртутью. Столбик ртути в стеклянной трубке уравновешивает своим весом давление воздуха, действующего на ртуть в чашке. При изменении давления изменяется и высота ртутного столба. Эти изменения фиксируются наблюдателем по шкале, прикрепленной рядом со стеклянной трубкой барометра.
Металлический барометр, или анероид, состоит из герметически закрытой тонкостенной гофрированной металлической коробки, внутри которой воздух разрежен. При изменении давления стенки коробки колеблются и вдавливаются или выпячиваются. Эти колебания системой рычагов передаются стрелке, которая перемещается по шкале с делениями.
Для записи изменений давления применяются самопишущие барометры — барографы. Работа барографа основана на том, что колебания стенок анероидной коробки передаются перу, которое чертит линию на ленте вращающегося вокруг своей оси барабана.
Давление на земном шаре может изменяться в широких пределах. Так, максимальная величина атмосферного давления 815,85 мм рт.ст. (1087 мб) зарегистрирована зимой в Туруханске, минимальная — 641,3 мм рт.ст. (854 мб) — в урагане “Ненси” над Тихим океаном.
Давление изменяется с высотой. Принято считать средним значением атмосферного давления давление над уровнем моря — 1013 мб (760 мм рт.ст.). С увеличением высоты воздух становится все более разреженным и давление уменьшается. В нижнем слое тропосферы до высоты 10 м оно понижается на 1 мм рт.ст. на каждые 10 м, или на 1 мб (гПа) на каждые 8 м. На высоте 5 км оно уже меньше в два раза, 15 км — в 8 раз, 20 км — в 18 раз.
Атмосферное давление непрерывно меняется в связи с изменением температуры и перемещением воздуха. В течении суток оно повышается дважды (утром и вечером), дважды понижается (после полудня и после полуночи). В течении года на материках максимальное давление наблюдается зимой, когда воздух переохлажден и уплотнен а минимальное — летом.
Распределение атмосферного давления по земной поверхности носит хорошо выраженный зональный характер, что обусловлено неравномерным нагреванием земной поверхности, а следовательно, и изменением давления. Изменение давления объясняется перемещением воздуха. Оно высокое там, где воздуха становится больше, низкое там, откуда воздух уходит. Нагреваясь от поверхности, воздух устремляется вверх и давление на теплую поверхность понижается. Но на высоте воздух охлаждается, уплотняется и начинает опускаться на соседние холодные участки, где давление возрастает. Таким образом, нагревание и охлаждение воздуха от поверхности Земли сопровождается его перераспределением и изменением давления.
В экваториальных широтах температуры воздуха постоянно высокие, воздух, нагреваясь, поднимается и уходит в сторону тропических широт. Поэтому в экваториальной зоне давление постоянно пониженное. В тропических широтах в результате притока воздуха создается повышенное давление. Над постоянно холодной поверхностью полюсов (в Арктике и Антарктике) давление повышенное, его создает воздух, приходящий из умеренных широт. Вместе с тем в умеренных широтах отток воздуха формирует пояс пониженного давления. В результате на Земле формируются пояса пониженного (экваториальный и два умеренных) и повышенного (два тропических и два полярных) давления. В зависимости от сезона они несколько смещаются в сторону летнего полушария (вслед за Солнцем).
Полярные области высокого давления зимой расширяются, летом сокращаются, но существуют весь год. Пояса пониженного давления весь год сохраняются близ экватора и в умеренных широтах южного полушария. Иная картина в северном полушарии. Здесь зимой в умеренных широтах над материками давление сильно повышается и поле низкого давления как бы “разрывается”: оно сохраняется только над океанами в виде замкнутых областей пониженного давления — Исландского и Алеутского минимумов. Но над материками, где давление заметно повысилось, образуются так называемые зимние максимумы: Азиатский (Сибирский) и Северо-Американский (Канадский). Летом в умеренных широтах северного полушария поле пониженного давления восстанавливается. При этом обширная область пониженного давления формируется над Азией — Азиатский минимум.
В тропических широтах — поясе повышенного давления — материки всегда нагреваются сильнее, чем океаны, и давление над ними ниже. Это обусловливает субтропические максимумы над океанами: Северо-Атлантический (Азорский), Северо-Тихоокеанский, Южно-Атлантический, Южно-Тихоокеанский и Индийский.
Иначе говоря, пояса повышенного и пониженного давления Земли, несмотря на крупномасштабные сезонные изменения своих показателей, являются довольно устойчивыми образованиями.
geographyofrussia.com
Сообщая по радио о погоде, дикторы в конце обычно сообщают: атмосферное давление 760 мм ртутного столба (или 749, или 754 и т.д.). Но многие ли понимают, что это значит, и откуда синоптики берут эти данные? О том, как измеряют атмосферное давление, как оно изменяется и влияет на человека, вы узнаете из этой статьи.
Первым атмосферное давление измерил итальянский ученый Эванджелиста Торричелли в 1643 году. Развивая учения Галилея, Торричелли после долгих опытов, доказал, что воздух имеет вес, и давление атмосферы уравновешивается столбом воды в 32 фута, или 10,3 м. Он пошел в своих исследованиях ещё дальше и позже изобрел прибор для измерения атмосферного давления — барометр.
Атмосферное давление — давление атмосферного воздуха на находящиеся в нем предметы и на земную поверхность. В каждой точке атмосферы атмосферное давление равно весу вышележащего столба воздуха с основанием, равным единице площади. С высотой атмосферное давление убывает. В соответствии с международной системой единиц (система СИ) основной единицей для измерения атмосферного давления является гектопаскаль (гПа), однако, в обслуживании ряда организаций разрешается применять старые единицы: миллибар (мб) и миллиметр ртутного столба (мм рт. ст.). Нормальным атмосферным давлением (на уровне моря) принято значение 760 мм ртутного столба (мм рт. ст.) при температуре 0 °С.
Измеряют атмосферное давление для того, чтобы с большей вероятностью предсказать возможное изменение погоды. Существует прямая связь между изменениями давления и изменениями погоды. Рост или понижение атмосферного давления с некоторой вероятностью может служить признаком изменения погоды.
Газы сильно сжимаемы и чем сильнее сжат газ, тем больше его плотность и тем большее давление он производит. Нижние слои воздуха сжаты всеми вышележащими слоями. Чем выше от поверхности Земли, тем воздух слабее сжат, тем меньше его плотность и, следовательно, тем меньшее давление он производит. Так, например, когда воздушный шар поднимается над Землей, то давление воздуха на шар становится меньше не только потому, что высота столба воздуха над ним уменьшается, но еще и потому, что плотность воздуха вверху меньше, чем внизу. Так как все метеостанции, измеряющие атмосферное давление, расположены на разных высотах и полученные на них показатели чаще всего приводят к уровню моря. Делают это потому, что атмосферное давление довольно существенно убывает с высотой. Так на высоте 5 000 м оно уже примерно в два раза ниже. Поэтому для получения представления о реальном пространственном распределении атмосферного давления и для сравнимости его величины в различных местностях и на разных высотах, для составления синоптических карт давление приводят к единому уровню – к уровню моря.
В течение суток давление также меняется, но незначительно, т.е. имеет суточный ход. Ночью повышается, а днем в период максимальных температур понижается. Особенно правильный суточный ход оно имеет в тропических странах, где дневное колебание достигает 2,4 мм рт. ст., а ночное — 1,6 мм рт. ст. С увеличением широты амплитуда изменения АД уменьшается, но вместе с тем становятся более сильными непериодические изменения атмосферного давления.
Распределение атмосферного давления по земной поверхности обусловливает движение воздушных масс и атмосферных фронтов, определяет направление и скорость ветра.
На самочувствие человека, достаточно долго проживающего в определённой местности, обычное, т.е. характерное давление не должно вызывать особого ухудшения самочувствия.
Пребывание в условиях повышенного атмосферного давления почти ничем не отличается от обычных условий. Лишь при очень высоком давлении отмечается небольшое сокращение частоты пульса и снижение минимального кровяного давления. Более редким, но глубоким становится дыхание. Незначительно понижается слух и обоняние, голос становится приглушенным, появляется чувство слегка онемевшего кожного покрова, сухость слизистых и др. Однако все эти явления относительно легко переносятся.
Более неблагоприятные явления наблюдаются в период изменения атмосферного давления — повышения (компрессии) и особенно его снижения (декомпрессии) до нормального. Чем медленнее происходит изменение давления, тем лучше и без неблагоприятных последствий приспосабливается к нему организм человека.
При пониженном атмосферном давлении отмечается учащение и углубление дыхания, учащение сердечных сокращений (сила их более слабая), некоторое падение кровяного давления, наблюдаются также изменения в крови в виде увеличения количества красных кровяных телец. В основе неблагоприятного влияния пониженного атмосферного давления на организм лежит кислородное голодание. Оно обусловлено тем, что с понижением атмосферного давления понижается и парциальное давление кислорода, поэтому при нормальном функционировании органов дыхания и кровообращения в организм поступает меньшее количество кислорода.
Повлиять на погоду мы не в состоянии. Но вот помочь своему организму пережить этот тяжелый период совсем несложно. При прогнозе значительного ухудшения погодных условий, а следовательно и резких перепадов атмосферного давления, прежде всего следует не паниковать, успокоиться, максимально снизить физическую нагрузку, а для тех у кого адаптация протекает довольно сложно, необходимо посоветоваться с врачом о назначении соответствующих лекарственных средств.
© Фото — Shutterstock.com
primpogoda.ru
Ртутный чашечный барометр. Прибор состоит из стеклянной трубки, наполненной ртутью и опущенной открытым концом в металлическую чашку со ртутью. Стеклянная трубка находится в металлической оправе, имеющей прорези для отсчета высоты ртутного столба. В оправу барометра вделан термометр "атташе", отсчет которого служит для вычисления температурной поправки.
Анероид. В приборе приемник давления состоит из пустотелой гофрированной металлической коробочки, из которой почти полностью выкачан воздух. При увеличении атмосферного давления коробочка сжимается, и ее деформация передается стрелке прибора, которая показывает давление. В прибор вделан изогнутый термометр "атташе".
Перед отсчетом слегка стучат по стеклу прибора и производят отсчет давления с точностью до 0,1 мб или 0,1 мм и температуры с точностью до 0,1°.
В показания прибора вводят следующие три поправки:
1) шкаловую - выбирают из паспорта прибора;
2) температурную - вычисляют по формуле;
3) добавочную - из паспорта прибора.
Измеренное атмосферное давление (независимо от того, велись ли наблюдения по анероиду, или же по ртутному барометру) приводят к уровню моря, исходя из того, что в нижних слоях воздуха на каждые 10 м высоты давление изменяется на 1 мм; например, если высота мостика, где расположен барометр, составляет 5 м, то к отсчитанному и исправленному всеми поправками давлению надо еще прибавить 0,5 мм.
Барограф. Прибор служит для непрерывной записи атмосферного давления. Воспринимающая часть представляет собой столбик из нескольких анероидных коробочек, расположенных одна над другой. Внутри коробочек помещены пружинки рессорного вида. При увеличении давления столбик коробочек понижается, при понижении давления коробочки распираются пружинками и высота столбика становится большей. Изменения в высоте столбика передаются стрелке прибора с пером, которое на ленте барабана записывает кривую изменения давления – «барограмму».
При смене лент на барографе на оборотной стороне ленты должны быть надписаны дата, время начала записи с точностью до минуты, наименование и место (координаты) судна. Лента и перо приводятся в точное соответствие с моментом начала записи.
Барограмма необходима для определения величины и характеристики барической тенденции (т.е. изменчивость давления во времени, обычно за три часа) – чрезвычайно важный элемент для прогноза погоды. Капитан Лухманов Д.А. выразил так:
Рис. 4.6.
Коль давленье уменьшается. Если ж выпуклостью книзу
а) За кривою наблюдай: б) На барографе пошло,
Если кверху выгибается, То погоды лишь капризы,
Свежих ветров ожидай И не будет ничего
Ну, а вот, когда давленье
Начинает возрастать,
То обратное явленье
Можно часто наблюдать:
в) Вверх кривая выгибается – г) Вниз дугою обращается -
к маловетрию, к штилям; Большей частию к ветрам.
Выразить, как меняется атмосферное давление в горизонтальном направлении, можно с помощью горизонтального барического градиента – который есть вектор Рг, направленный по нормали к изобаре, т.е. линии равного давления, в сторону уменьшения давления, а величина вектора равна производной от давления по этому направлению.
В разных точках барического поля направление и величина барического градиента разные. Там, где изобары сгущены, изменение давления на единицу расстояния будет больше; там, где изобары расположены реже - меньше. Иначе говоря, величина горизонтального барического градиента обратно пропорциональна расстоянию между изобарами.
Вертикальный Рв и горизонтальный Рг барические градиенты – это составляющее полного пространственного вектора барического градиента , где N – направление нормали к изобарической поверхности.
Наличие в атмосфере горизонтального барического градиента означает, что изобарические поверхности наклонены к поверхности уровня и, пересекаясь с ней, образуют изобары. Изобарические поверхности наклонены всегда в направлении градиента, т.е. в сторону уменьшения давления, поэтому в антициклонах они имеют форму куполов, а в циклонах прогнуты от периферии к центру (рис. 4.7.).
Давление с высотой изменяется значительно быстрее, чем в горизонтальном направлении, и вертикальный барический градиент оказывается в несколько тысяч раз больше горизонтального. Но сила вертикального градиента уравновешивается противоположно направленной ему силой тяжести и поэтому не вызывает вертикальных перемещений воздуха. Сила горизонтального градиента при отсутствии движения воздуха никакими силами не уравновешивается и поэтому является основной причиной ветра.
Рис. 4.7. Вертикальный разрез через области давления:
а – высокого; б – низкого
При расчете горизонтального барического градиента по синоптическим картам, где изобары проводятся через 5 мбар, его величина рассчитывается по формуле:
,
где Dn – расстояние в градусах широты между двумя соседними изобарами в данном участке по прямой, которая возможно более близка к нормалям обеих изобар; у земной поверхности горизонтальные барические градиенты имеют порядок величины от нескольких десятков до целых миллибар на градус широты.
Давление имеет ярко выраженный годовой ход. Годовые колебания давления зависят от годового хода температуры, от широты места, характера рельефа местности и характера атмосферных движений. В отличие от суточного хода годовой ход давления наиболее резко выражен во внетропических широтах.
Различают два типа годового хода давления воздуха: морской и континентальный. В теплое время года материки нагреваются значительно быстрее, чем океаны, и над материками располагаются более теплые и менее плотные массы воздуха. В результате этого на материках летом создается давление воздуха ниже, чем над океанами. Зимой материки выхолаживаются сильнее, чем океаны, и тогда над ними располагаются более холодные и более плотные массы воздуха. Поэтому зимой над материками давление выше, чем над океанами.
Амплитуды годовых периодических колебаний давления выражаются десятками миллибар.
Ветер
Ветром называется движение воздуха в горизонтальном направлении. Ветер возникает вследствие неравномерного распределения атмосферного давления.
Чем больше барический градиент, тем больше должна быть и скорость вызванного им ветра.
Имея карту с изобарами, можно определить величину и направление барического градиента. Направление барического градиента берется перпендикулярно к изобарам от большего давления к меньшему, а величина его равна разности давления, взятой в этом направлении (т.е. в направлении, перпендикулярном изобарам) на расстоянии в 60 морских миль.
При отсутствии вращения Земли ветер дул бы по направлению барического градиента, т.е. от большего давления к меньшему, перпендикулярно к изобарам. Вследствие вращения Земли ветровые потоки дуют не по направлению градиента, а отклоняются от этого направления в северном полушарии вправо, а в южном – влево.
Направление ветра обозначается наименованием той части горизонта (румба), откуда он дует (ветер дует в компас). Так, например, ветер, дующий из северной точки горизонта в южную, называется северным, из восточной в западную – восточным и т.д. Иногда направление ветра обозначают в градусах (от 0 до 360°).
Величина скорости ветра измеряется числом метров, которые воздушная масса проходит в одну секунду. Иногда скорость ветра измеряется в узлах и, наконец, для грубых определений сила ветра оценивается по шкале Бофорта. (см. таблицу)
Шкала силы ветра
(шкала Бофорта)
Термин | Баллы | Сила ветра | Характеристика | |
узлы | м/сек | |||
Calm | До 1 | 0-0,2 | Штиль | |
Light air | 1-3 | 0,3-1,5 | Тихий ветер | |
Light breeze | 4-6 | 1,6-3,3 | Легкий ветер | |
Gentle breeze | 7-10 | 3,4-5,4 | Слабый ветер | |
Moderate breeze | 11-16 | 5,5-7,9 | Умеренный ветер | |
Fresh breeze | 17-21 | 8,0-10,7 | Свежий ветер | |
Strong breeze | 22-27 | 10,8-13,8 | Сильный ветер | |
Near gale | 28-33 | 13,9-17,1 | Крепкий ветер | |
34-40 | 17,2-20,7 | Очень крепкий ветер | ||
Strong gale | 41-47 | 20,8-24,4 | Шторм | |
Storm | 48-55 | 24,5-28,4 | Сильный шторм | |
Violent storm | 56-63 | 28,5-32,6 | Жестокий шторм | |
Hurricane | Свыше 64 | Свыше 32 | Ураган |
Шкала силы ветра
Баллы | Действие на поверхность моря |
Зеркально-гладкое море | |
Отдельные то появляющиеся, то исчезающие пятна легчайшей ряби | |
Легкая рябь пятнами | |
Поверхность моря тускнеет; маленькие, короткие, чуть всплескивающие волны | |
Гребни волн начинают опрокидываться, но образуют только стекловидную пену | |
Местами появляются барашки | |
Во многих местах образуются барашки | |
Все море покрыто барашками | |
Срываемая с гребней пена ложится полосами по ветру | |
Полосы пены ложатся тесными рядами по направлению ветра | |
Пена широкими плотными полосами ложится по ветру, поверхность моря становится белой | |
Все море покрыто пеной, ветер, срывая гребни, несет водяную пыль, уменьшающую видимость |
На кораблях скорость ветра измеряется судовой метеостанцией или по ручному анемометру. Основной частью этого прибора является крестовина с полушариями. Внизу прибора имеется стопор, разъединяющий и соединяющий стрелки с осью крестовины.
Измерение скорости ветра с помощью ручного анемометра производится следующим образом.
Наблюдатель разъединяет стрелки от оси и производит первый отсчет, который записывает в журнал наблюдений. Затем становится с наветренной стороны мостика или у наветренного борта так, чтобы надстройки не искажали ветра. Поднимает прибор в вытянутой руке над головой, замечает момент по часам и передвигает стопор на «пуск». Через 100 секунд снова ставит стопор на «стоп». Делает второй отсчет, записывает его и из второго отсчета вычитает первый; разность делит на сто. По полученному частному находит скорость ветра в метрах в секунду в аттестате анемометра.
Иногда в аттестате дается множитель, на который нужно умножить частное, чтобы получить скорость ветра.
Для того чтобы определить направление ветра, ведут наблюдение у компаса не менее 2 мин. за направлением развевающегося вымпела, флага или дыма из труб судна.
Определив среднее направление ветра (откуда дует), отсчитывают по компасу, с наветренной стороны, соответствующий румб картушки. Направление ветра определяется в точностью до двух румбов, причем отмечаются только четные румбы. Найденный румб и скорость являются действительным направлением и действительной скоростью ветра, если судно стоит на месте, и кажущимися, если судно имеет ход.
Действительный (истинный) ветер вычисляют на ветрочете или графически, помня, что кажущийся ветер, измеренный на ходу судна, есть равнодействующая действительного ветра и так называемого курсового ветра при ходе судна. Задача нахождения действительного ветра сводится, таким образом, к нахождению составляющей по известной равнодействующей (вектор кажущегося ветра) и по известной другой составляющей (вектор курсового ветра).
Пример. Истинный курс N, скорость 20 узлов (10,3 м/сек). Кажущийся ветер W, 9,9 м/сек. Найти истинный ветер (скорость и направление).
Решение. (рис. 4.8.).
От точки О откладываем вектор курсового ветра ОВ (курсовой ветер по скорости равен скорости судна и имеет направление ОВ, которое показано на рис. 4.8 как направление, противоположное курсу судна). В таком же масштабе от точки О откладываем вектор кажущегося ветра ОС. От конца вектора курсового ветра к концу вектора кажущегося ветра проводим вектор ВС, который дает направление и скорость истинного ветра (от точки В к точке С).
Рис. 4.8.
Ответ: Направление истинного ветра зюйд-вест (направление ветра считается откуда дует, т.е. в картушку компаса). Скорость 14,3 м/сек (чтобы получить скорость истинного ветра, следует вектор ВС измерить в том же самом масштабе).
poznayka.org
Барометр, что это такое? Это приспособление для учета колебаний атмосферного давления. Надземный слой нашей планеты имеет толщину в десятки километров. Концентрация смешанных газов в нем отличается небольшой массой, однако в таких значимых объемах оказывает на поверхность существенную нагрузку. Фактически, человек редко его ощущает, так как имеет приспособленность к воздействию этого фактора. Тем не менее, эту величину вполне реально измерить.
Простейший прибор для измерения атмосферного давления (АД) представляет собой нехитрое устройство, состоящее из тонкостенной стеклянной трубки и ртутного наполнителя. Один из стандартных размеров такого приспособления: трубка толщиной 1 миллиметр и длинной в сто сантиметров.
Если перевернуть емкость закрытым концом вверх, а открытой частью вниз, то некий объем ртути удалится, а определенная часть останется внутри. Содержание жидкого металла будет снижаться до стабилизации внутреннего и наружного давления.
Анероид-барометр, что это такое? В принципе работы этого устройства учитываются колебания через круглый металлический корпус с волнистыми стенками, из которого выкачан воздух.
Эластические боковины короба при увеличении давления прогибаются, а при снижении - выпираются. Специальным механизмом рабочие камеры связаны со стрелкой. Она показывает на величину атмосферного давления по шкале, градуированной в миллиметрах столба ртутного.
Прибор для измерения атмосферного давления представляет собой U-образно изогнутую стеклянную колбу с ртутным наполнителем. Показания определяются по разности содержимого в увеличенном и малом отрезке колбы.
При помощи барографов вариации АД регистрируются на ленте, находящейся в действующем блоке барабанного типа. Измеряемые показатели регистрируются в миллиметрах (мм рт. ст.) или миллибарах (мбар).
Далее представлен барограф. На вопрос - барометр, что это такое в данной конфигурации, можно ответить – это агрегат-самописец для постоянной фиксации атмосферного давления. Его действие основано на колебаниях АД. В итоге деформация передается системой на устройство. При повышении показаний происходит сжимание коробок, рычаг с пером идет вверх, а в случае снижения давления камеры под действием контрольной пружины становятся шире, и самописец проводит нижнюю линию. Фиксированные показания давления вычитаются на специальной градуированной бумажной ленте, которая размещена на вращающемся барабане.
Для устранения температурных колебаний, влияющих на точность показаний, в устройства монтируют конденсаторы из биметалла. Приспособления устанавливаются вдали от нагревательных приборов и должны быть защищены от прямого воздействия солнечных лучей. Заводной механизм рассчитан на сутки либо на недельный режим.
Показания барометра фиксируют с учетом изменения климатических условий в разных регионах, поскольку давление воздуха – величина непостоянная, о чем известно еще со школьных уроков природоведения.
При хорошей, теплой и безветренной погоде барометр настенный или настольный показывает высокие значения. Соответственно, при снижении данных в ближайшее время ожидается похолодание либо осадки.
Приспособление, расположенное внутри дома работает точно так, как и в пространстве, не ограниченном оградами, стенами и заборами. Слегка видоизменяет показания прибора высота здания, поскольку давление будет более низким на 9-м этаже и выше, чем на меньших уровнях одного строения.
Чем выше подъем вверх, тем ниже показатели давления атмосферного столбика. Выявленная закономерность применяется в авиационных приборах, определяющих высоту полета. Подобные устройства называются альтиметрами.
Безусловно, результаты первых, не совсем совершенных приборов, существенно варьировались от погодных факторов, ведь негативные метеоусловия сопровождались падением давления, соответственно, показания прибора высвечивали данные, которые объективно больше реальной отметки. Для снятия правильных показаний требуется корректировка исходящих параметров. Принцип работы современных альтиметров иной - они не используют для измерения высоты давление атмосферы.
Часы с барометром и другие виды устройств - это стрелочный прибор с круглой или овальной шкалой, на которой имеются деления. Величина измерения берется в миллиметрах ртутного столба.
При значениях 750-760 мм рт. ст. в перспективе ожидается замечательный погожий день, который не помешает прогулке, поездке на природу, дачу. При снижении указателя барометра ниже отметки 750 имеется вероятность дальнейшего падения, значит - стоит ожидать ненастную погоду, внезапное похолодание и обильное выпадение осадков.
Слежение за АД жизненно важно для тех, кто страдает повышенным давлением крови. В периоды критического изменения этого показателя такие люди подвержены ухудшению состояния здоровья. Информация о погодных переменах существенна для них по причине своевременного принятия лекарства, сохранения своей работоспособности и здоровья.
Сейчас чаще всего используются барометры чашечного типа или сифонные виды. В стационарных устройствах, которые оборудованы компенсированной шкалой, атмосферное давление высчитывается непосредственно по положению ртути в стеклянной емкости.
В экземплярах для экспедиций перед началом наблюдений предварительно корректируют уровень ртути в чаше на нулевой отметке, используя регулирующий винт. В сифонно-чашечных приспособлениях величина АД измеряется по разнице высот столба в длинном и открытом участке. Такое приспособление отсчитывает показания с точностью до пяти сотых. Для определения десятых долей столба используется подвижной металлический шаблон.
Полученные числовые результаты атмосферного давления приводятся по специальной таблице к нулю градусов по Цельсию. Температурные корректировки показаний могут быть весьма существенными. Невзирая на виды барометров, они устанавливаются вдали от источников тепла (печей, обогревателей, прямого солнечного воздействия), а также подальше от дверных и оконных проемов.
Рассматриваемое приспособление может применяться в удобном и компактном исполнении. Например, часы с барометром имеют следующую функциональность:
На вопрос "Барометр, что это такое?" однозначно можно ответить – приспособление особенно важное для путешественников, рыбаков, охотников и мореплавателей. Кроме того, эта штука в бытовом использовании позволяет довольно точно предугадать колебания погоды, что актуально для людей с заболеваниями сердечно-сосудистой и нервной системы.
fb.ru