Силы в природе. Силы в природе


Силы в природе

Причиной изменения движения: появления ускорения у тел является сила. Силы возникают при взаимодействии тел друг с другом. Но какие существуют виды взаимодействий и много ли их?

На первый взгляд может показаться, что различных видов воздействий тел друг на друга, а следовательно, и различных видов сил существует очень много. Ускорение можно сообщить телу, толкнув или потянув его рукой; с ускорением плывёт корабль, когда дует попутный ветер; с ускорением движется любое тело, падающее на Землю; натянув и отпустив тетиву лука, мы сообщаем ускорение стреле. Во всех рассмотренных случаях действуют силы, и все они кажутся совершенно различными. А можно назвать ещё и другие силы. Все знают о существовании электрических и магнитных сил, о силе прилива и отлива, о силе землетрясений и ураганов.

Но действительно ли в природе существует так много разных сил?

Если мы говорим о механическом движении тел, то здесь мы встречаемся только с тремя видами сил: сила тяготения, сила упругости и сила трения. К ним сводятся, все рассмотренные выше силы. Силы упругости, тяготения и трения являются проявлением  сил всемирного тяготения и электромагнитных сил природы. Получается, что в природе из указанных существует только две силы.

Электромагнитные силы. Между наэлектризованными телами действует особая сила, которая называется электрической силой, которая может быть как силой притяжения, так и силой отталкивания. В природе существуют заряды двух видов: положительные и отрицательные. Два тела с различными зарядами притягиваются, а  тела с одноимёнными зарядами отталкиваются.

Электрические заряды обладают одним особенным свойством: когда заряды движутся, между ними, кроме электрической силы, возникает и другая – магнитная сила.

Магнитная и электрическая силы тесно связаны друг с другом и действуют одновременно. А так как чаще всего приходится иметь дело  с движущимися зарядами, то действующие между ними силы  нельзя разграничить. И эти силы называют электромагнитными силами.

Как же возникает «электрический заряд», который может быть у тела, а может и не быть?

Все тела состоят из молекул и атомов. Атомы состоят ещё из более мелких частиц – атомного ядра и электронов. Они, ядра и электроны, обладают определёнными электрическими зарядами. Ядро имеет положительный заряд, а электроны – отрицательный.

В нормальных условиях атом не имеет заряда – он нейтрален, потому что суммарный отрицательный заряд электронов равен положительному заряду ядра. И тела, которые состоят их таких нейтральных атомов, электрически нейтральны. Между такими телами практически нет электрических сил взаимодействия.

Но в одном и том же жидком (или твёрдом) теле соседние атомы настолько близко расположены один к другому, что силы взаимодействия между зарядами, из которых они состоят, весьма значительны.

Силы взаимодействия атомов зависят от расстояний между ними. Силы взаимодействия между атомами способны изменять своё направление при изменении расстояния между ними. Если расстояние между атомами очень мало, то они отталкиваются друг от друга. Но если расстояние между ними увеличить, то атомы начинают притягиваться. При некотором расстоянии между атомами силы их взаимодействия становятся равными нули. Естественно, что на таких расстояниях атомы и располагаются друг относительно друга. Отметим, что расстояния эти очень малы, и приблизительно равны размерам самих атомов.

© blog.tutoronline.ru, при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Природа сил

Все известные взаимодействия и соответственно силы в природе сводятся к следующим четырем типам: гравитационное, электромагнитное, сильное, слабое.

Гравитационное взаимодействие свойственное всем телам во Вселенной, проявляется в виде взаимного притяжения всех тел в природе, независимо от среды в которой они находятся, в микромире элементарных частиц при обычных энергиях роли не играет. Ярким примером является притяжение Землей. Это взаимодействие подчиняется закону всемирного тяготения: сила взаимодействия между двумя материальными точками массами m1 и m2 прямо пропорциональная произведению этих масс и обратно пропорциональная квадрату расстояния между ними. Математически этот закон имеет вид:

(3.7)

где G = 6,67 10-11 Н м2/кг2 - гравитационная постоянная, которая определяет силу притяжения между двумя одинаковыми телами с массами m1 = m2 = 1 кг на расстоянии r = 1 м.

Электромагнитное взаимодействие – взаимодействие между неподвижными и подвижными электрическими зарядами. Этим взаимодействием в частности обусловлены силы межмолекулярного и межатомного взаимодействия.

Взаимодействие между двумя точечными неподвижными зарядами q1 и q2 подчиняется закону Кулона:

,

где k = 9 109 Н м2/Кл2 – коэффициент пропорциональности.

Если заряд движется в магнитном поле, то на него действует сила Лоренца:

v – скорость заряда, В – вектор магнитной индукции.

Cильное взаимодействие обеспечивает связь нуклонов в ядре атома. Слабое отвечает за большинство распадов элементарных частиц, а также за процессы взаимодействия нейтрино с веществом.

В классической механике мы имеем дело с гравитационными и электромагнитными силами, которые приводят к появлению сил притяжения, сил упругости, сил трения и других.

Сила тяжести характеризует взаимодействие тела с Землей.

Вблизи Земли все тела падают приблизительно с одинаковым ускорением g    9,8  м/с2, которое называется ускорением свободного падения. Отсюда следует, что вблизи Земли на каждое тело действует сила тяжести, которая направлена к центру Земли и равна произведению массы тела на ускорение свободного падения.

вблизи поверхности Земле поле однородно (g=const). Сравнивая с, получим, что.

Сила реакции опоры – сила , с которой опора действует на тело. Она приложена к телу и перпендикулярна поверхности соприкосновения. Если тело лежит на горизонтальной поверхности, то сила реакции опоры численно равна силе тяжести. Рассмотрим 2 случая.

1. Рассмотрим рис.

Пусть тело покоится, тогда на него действует две силы. Согласно 2 закону Ньютона

Найдем проекции этих сил на ось у и получим, что

2. Пусть теперь тело находится на наклонной плоскости, составляющей угол с горизонтом (см. рис.).

Рассмотрим случай, когда тело будет покоиться, тогда на тело будут действовать две силы, уравнение движения выглядит аналогично первому случаю. Записав 2 закон Ньютона в проекции на ось у, получим, что сила реакции опоры численно равна проекции силы тяжести на перпендикуляр к этой поверхности

Вес тела – сила, с которой действует тело на опору или подвес. Вес тела равен по модулю силе реакции опоры и направлен противоположно

Часто путают силу тяжести и вес. Это обусловлено тем, что в случае неподвижной опоры эти силы совпадают по величине и по направлению Однако надо помнить, что эти силы приложены к разным телам: сила тяжести приложена к самому телу, вес приложен к подвесу или опоре. Кроме того, сила тяжести всегда равна mg, независимо от того покоится тело или движется, сила веса зависит от ускорения, с которым движутся опора и тело, причем она может быть как больше, так и меньше mg, в частности, в состоянии невесомости она обращается в нуль.

Сила упругости. Под действием внешних сил может происходить изменение формы тела – деформация. Если после прекращения действия силы форма тела возобновляется, деформация называется упругой. Для упругой деформации справедлив закон Гука:

x - удлинение тела вдоль оси х, k  - коэффициент пропорциональности, который называют коэффициентом упругости.

При непосредственном соприкосновении тел помимо сил упругости могут возникать силы и другого типа, так называемые силы трения.

Силы трения.

Силы трения бывают двух видов:

  1. Сила трения покоя.

  2. Сила трения, обусловленная движением тел.

Сила трения покоя – сила, с которой действует поверхность на покоящееся на ней тело в направлении, противоположном приложенной к телу силе (см. рис) и равная ей по модулю

Силы трения 2 типа появляются при перемещении соприкасающихся тел или частей друг относительно друга. Трение, возникающее при относительном перемещении двух соприкасающихся тел, называют внешним. Трение между частями одного и того же сплошного тела (жидкость или газ), носит название внутреннего.

Сила трения скольжения действует на тело в процессе его перемещения по поверхности другого тела и равна произведению коэффициента трения  между этими телами на силу реакции опоры N и направлена в сторону, противоположную относительной скорости движения этого тела

F = N

Силы трения играют очень большую роль в природе. В нашей повседневной жизни трение нередко оказывается полезным. Например, затруднения которые испытывают пешеходы и транспорт во время гололедицы, когда трение между покрытием дороги и подошвами пешеходов или колесами транспорта значительно уменьшается. Не будь сил трения, мебель пришлось бы прикреплять к полу, как на судне во время качки, ибо она при малейшей негоризонтальности пола сползла бы в направлении покатости.

Закон сохранения импульса

Замкнутой (изолированной) системой тел называют такую систему, тела которой не взаимодействуют с внешними телами или если равнодействующая внешних сил равна нулю.

Если на систему материальных точек не действуют внешние силы, то есть система изолирована (замкнутая), из (3.12) выплывает, что

,

или

(3.13)

Мы получили фундаментальный закон классической физики - закон сохранения импульса: в изолированной (замкнутой) системе суммарный импульс остается величиной постоянной. Для того, чтобы выполнялся закон сохранения импульса достаточно, чтобы система была замкнута.

Закон сохранения импульса является фундаментальным законом природы не знающим исключений.

В нерелятивистском случае можно ввести понятие центра масс (центра инерции) системы материальных точек, под которым понимают воображаемую точку, радиус-вектор которой , выражается через радиусы векторы материальных точек по формуле:

(3.14)

Найдем скорость центра масс в данной системе отсчета, взяв производную по времени от соотношения (3.14)

. (3.14)

Импульс системы равняется произведению массы системы на скорость ее центра инерции.

. (3.15)

Понятие центра масс позволяет придать уравнению другую форму, которая часто оказывается более удобной. Для этого достаточно учесть, что масса системы есть величина постоянная. Тогда

(3.16)

где – сумма всех внешних сил, которые действуют на систему. Уравнение (3.16) – уравнение движенияцентра инерции системы. Теорема о движении центра масс гласит: центр масс движется как материальная точка, масса которой равна суммарной массе всей системы, а действующая сила – геометрической сумме всех внешних сил, действующих на систему.

Если система замкнута, то . В этом случае уравнение (3.16) переходит в, из которого следуетV=const. Центр масс замкнутой системы движется прямолинейно и равномерно.

studfiles.net

Силы в природе

Физическая величина, которая характеризует меру, с которой на тело воздействуют другие тела либо поля, называется силой. Согласно второму закону Ньютона, ускорение, которое получает тело, прямо пропорционально действующей на него силе. Соответственно, чтобы изменить скорость тела, необходимо воздействовать на него силой. Поэтому верным является утверждение о том, что силы в природе служат источником любого движения.

Инерциальные системы отсчета

Силы в природе являются векторными величинами, то есть они имеют модуль и направление. Две силы могут считаться одинаковыми лишь тогда, когда равны их модули, а их направления совпадают.

Если на тело не действуют силы, а также в том случае, когда геометрическая сумма сил, воздействующих на данное тело (эта сумма часто называется равнодействующей всех сил), равна нулю, то тело либо остается в состоянии покоя, либо продолжает движение в одном направлении с постоянной скоростью (то есть движется по инерции). Это выражение справедливо для инерциальных систем отсчета. Существование таких систем постулируется первым законом Ньютона. В природе таких систем нет, но они являются удобной математической моделью. Тем не менее, часто при решении практических задач систему отсчета, связанную с Землей, можно считать инерциальной.

Земля – инерциальная и неинерциальная система отсчета

В частности при строительных работах, при расчете движения автомобилей и плавательного транспорта предположения о том, что Земля – инерциальная система отсчета, вполне достаточно, чтобы с необходимой для практического решения задач точностью описать действующие силы.

В природе также существуют задачи, не допускающие такого предположения. В частности, это относится к космическим проектам. При старте ракеты строго вверх она вследствие вращения Земли осуществляет видимое движение не только вдоль вертикали, но и в горизонтальном направлении против вращения Земли. В этом движении проявляется неинерциальность системы отсчета, связанной с нашей планетой.

Физически на ракету не действуют силы, отклоняющие ее. Тем не менее, для описания движения ракеты удобно использовать силы инерции. Эти силы не существуют физически, но предположение об их существовании позволяет представить неинерциальную систему инерциальной. Другими словами, при расчетах траектории ракеты считают, что система отсчета «Земля» является инерциальной, но при этом на ракету действует некоторая сила в горизонтальном направлении. Эта сила называется сила Кориолиса. В природе ее действие становится заметным, когда речь идет о телах, движущихся на некоторой высоте относительно нашей планеты в течение довольно большого времени либо с большой скоростью. Так, ее учитывают, не только описывая движение ракет и спутников, но и при расчетах движения артиллерийских снарядов, самолетов и т.д.

Природа взаимодействий

Все силы в природе по характеру своего происхождения относятся к четырем фундаментальным взаимодействиям (электромагнитное, гравитационное, слабое и сильное). В макромире заметным является лишь воздействие гравитации и электромагнитных сил. Слабые и сильные взаимодействия влияют на процессы, происходящие внутри атомных ядер и субатомных частиц.

Самым распространенным примером гравитационного взаимодействия является сила притяжения. Это сила, с которой Земля действует на окружающие ее тела.

Электромагнитные силы, помимо очевидных примеров, включают в себя все упругие, связанные с давлением взаимодействия, которые тела оказывают друг на друга. Соответственно, такая сила природы, как вес (сила, с которой тело действует на подвес либо опору), имеет электромагнитную природу.

fb.ru

2.5. Силы в природе.

Из кинематики известно, что знание величины и направления ускорения позволяет вычислить значения радиуса - вектора материальной точки в любой последующий момент времени, т.е. предсказать положение точки. Законы динамики позволяют сделать это, если известна правая часть уравнений (2-3). Другими словами, нужно уметь определять силы, действующие на тело, положение которого требуется описать. Взаимодействие между макроскопическими телами физика сводит к взаимодействию между элементарными частицами. Таких элементарных частиц в настоящее время известно более сотни. Среди них наиболее популярны электрон, протон и нейтрон. Для характеристики всех частиц вводятся такие понятия как масса покоя, электрический заряд, собственный механический момент (спин), а также четность, странность, красивость, барионный заряд, цветовой заряд, слабый заряд и т.д. Установлено, что между элементарными частицами существует четыре фундаментальных взаимодействия: сильное, слабое, электромагнитное и гравитационное. Сравнительные характеристики этих взаимодействий приведены в таблице 2.1.

Таблица 2.1.

Название вза-имодействия

Относительная интенсивность

Частица,«пере-носящая» взаи-модействие

Характеристи-ка частицы

Сильное

1

p-мезоны (глюоны)(8 типов )

m ~ 250 mэлект

разнообразные

Электромаг-

нитное

10-2

фотон

E= hn

Слабое

10-13

W - частицы

Z - частицы

Е ~102 с2 m протон

гипотетичны

Гравитацион-

ное

10-40

гравитон

гипотетичен

Из таблицы 2.1 видно, что гравитационные силы являются слабейшими из всех фундаментальных взаимодействий, однако они обладают свойствами аддитивности и достигают значительных величин в космическом масштабе (притяжение Луны, строение Солнечной системы и т.п.). Величина гравитационной силы притяжения двух точечных масс m1 и m2 определена Ньютоном и известна как закон всемирного тяготения:

, ( 2-6)

где r - расстояние между массами, а G = 6,67 10 -11 Н· м2/кг2 - гравитационная постоянная. Чтобы подчеркнуть, что сила - вектор, закон записывают несколько иначе, рассматривая силу, действующую на m2 со стороны m1:

, ( 2-7)

откуда видно направление силы (она направлена вдоль прямой, соединяющей взаимодействующие массы). Модуль силы притяжения P тела массы m к Земле, которую называют силой тяжести можно записать так:

( 2-8)

где величина - ускорение свободного падения, МЗ- масса Земли, а RЗ - радиус Земли. Из выражения g видно, что оно не зависит от массы выбранного тела и поэтому одинаково для всех тел в определенной точке земной поверхности.

Кроме гравитационных сил в механике рассматриваются упругие силы и силы трения, которые обусловлены электрическими силами.Силы упругости обусловлены деформациями. Деформации связаны с изменением взаимного расположения молекул, образующих рассматриваемое тело, причем силы возникают лишь тогда, когда деформации носят упругий характер. В этом случае справедлив закон Гука так, что

,

где x обозначает величину упругой деформации, а к - коэффициент пропорциональности, зависимый от свойств деформируемого тела и вида деформации. Частным примером проявления упругих сил служат силы реакции опор, направление которых считается всегда нормальным (перпендикулярным) к деформируемой поверхности. Другим примером действия упругих сил могут служить так называемые силы связи (силы натяжения).

Силы трения препятствует скольжению соприкасаю­щихся тел друг относительно друга. Силы трения зависят от относительных скоро­стей тел. Силы трения могут быть разной природы, но в результате их действия ме­ханическая энергия всегда превращается во внутреннюю энергию соприкасающих­ся тел.

Различают внешнее (сухое) и внутрен­нее (жидкое или вязкое) трение. Внешним трением называется трение, возникающее в плоскости касания двух соприкасающих­ся тел при их относительном перемещении. Если соприкасающиеся тела неподвижны друг относительно друга, говорят о трении покоя, если же происходит относительное перемещение этих тел, то в зависимости от характера их относительного движения говорят о трении скольжения, качения или верчения.

Внутренним трением называется тре­ние между частями одного и того же тела, например между различными слоями жид­кости или газа, скорости которых меняют­ся от слоя к слою. В отличие от внешнего трения здесь отсутствует трение покоя. Если тела скользят относительно друг дру­га и разделены прослойкой вязкой жидко­сти (смазки), то трение происходит в слое смазки. В таком случае говорят о гидроди­намическом трении (слой смазки доста­точно толстый) и граничном трении (тол­щина смазочной прослойки ~0,1 мкм и меньше).

Обсудим некоторые закономерности внешнего трения. Это трение обусловлено шероховатостью соприкасающихся повер­хностей; в случае же очень гладких по­верхностей трение обусловлено силами межмолекулярного притяжения.

Рассмотрим лежащее на плоскости те­ло (рис.2.1), к которому приложена горизонтальная сила F.

Рис.2.2

Тело придет в движе­ние лишь тогда, когда приложенная сила будет больше силы трения. Француз­ские физикиГ. Амонтон (1663—1705) и Щ. Кулон (1736—1806) опытным путем установили следующий закон: сила трения скольжения Fтр пропорциональна силе N нормального давления, с которой одно тело действует на другое:

Fтр =fN,

где f — коэффициент трения скольжения, зависящий от свойств соприкасающихся поверхностей.

Найдем значение коэффициента тре­ния. Если тело находится на наклонной плоскости с углом наклона (рис.2.2), то оно приходит в движение только когда тангенциальная составляющая F силы тя­жести больше силы трения. Следова­тельно, в предельном случае (начало скольжения тела) F=Fтр

или откуда.

Таким образом, коэффициент трения ра­вен тангенсу угла a0, при котором на­чинается скольжение тела по наклонной плоскости.

Для гладких поверхностей определен­ную роль начинает играть межмолекуляр­ное притяжение. Поэтому Б. В. Дерягиным (р. 1902) предложен закон трения скольжения

,

где p0 — добавочное давление, обус­ловленное силами межмолекулярного при­тяжения, которые быстро уменьшаются с увеличением расстояния между частица­ми; S — площадь контакта между телами; — истинный коэффициент трения скольжения.

Трение играет большую роль в при­роде и технике. Благодаря трению движет­ся транспорт, удерживается забитый в стену гвоздь и т. д.

В некоторых случаях силы трения ока­зывают вредное действие, и поэтому их надо уменьшать. Для этого на трущиеся поверхности наносят смазку (сила трения уменьшается примерно в 10 раз), которая заполняет неровности между этими повер­хностями и располагается тонким слоем между ними так, что поверхности как бы перестают касаться друг друга, а скользят друг относительно друга отдельные слои жидкости. Таким образом, внешнее трение твердых тел заменяется значительно мень­шим внутренним трением жидкости.

Радикальным способом уменьшения силы трения является замена трения скольжения трением качения (шариковые и роликовые подшипники и т.д.). Сила трения качения определяется по закону Кулона:

Fтр = fkN/r,

где r — радиус катящегося тела; fk — коэффициент трения качения.

studfiles.net

Силы в природе

Занимательные фишки - 7 класс Занимательные фишки - 8 класс Занимательные фишки - 9 класс 10-11 класс Диафильмы по физике

«Физика - 10 класс»

В главе 2 мы ввели понятие силы как количественной меры действия одного тела на другое. В этой главе мы рассмотрим, какие силы рассматриваются в механике, чем определяются их значения.

Много ли видов сил существует в природе?Перечислите известные вам силы. Какую природу они имеют — гравитационную или электромагнитную?

На первый взгляд кажется, что мы взялись за непосильную и неразрешимую задачу: тел на Земле и вне её бесконечное множество. Они взаимодействуют по-разному.

Так, например, камень падает на Землю; электровоз тянет поезд; нога футболиста ударяет по мячу; потёртая о мех эбонитовая палочка притягивает лёгкие бумажки, магнит притягивает железные опилки; проводник с током поворачивает стрелку компаса; взаимодействуют Луна и Земля, а вместе они взаимодействуют с Солнцем; взаимодействуют звёзды и звёздные системы, луч света отражается от зеркала и т. д. Подобным примерам нет конца.

Похоже, что в природе существует бесконечное множество взаимодействий (сил)? Оказывается, нет!

Четыре типа сил.

В безграничных просторах Вселенной, на нашей планете, в любом веществе, в живых организмах, в атомах, в атомных ядрах и в мире элементарных частиц мы встречаемся с проявлением всего лишь четырёх типов сил: гравитационных, электромагнитных, сильных (ядерных) и слабых.

Гравитационные силы, или силы всемирного тяготения, действуют между всеми телами, имеющими массу, — все тела притягиваются друг к другу.

Но это притяжение существенно обычно лишь тогда, когда хотя бы одно из взаимодействующих тел так же велико, как Земля или Луна. Иначе эти силы столь малы, что ими можно пренебречь.

Электромагнитные силы действуют между частицами, имеющими электрические заряды.

Сфера их действия особенно обширна и разнообразна.

В атомах, молекулах, твёрдых, жидких и газообразных телах, живых организмах именно электромагнитные силы являются главными. Такие, казалось бы, чисто механические силы, как силы трения и упругости, имеют электромагнитную природу. Велика их роль в атомах.

Ядерные силы действуют между частицами в атомных ядрах и определяют свойства ядер.

Область действия ядерных сил очень ограничена.

Они заметны только внутри атомных ядер (т. е. на расстояниях порядка 10-15 м). Уже на расстояниях между частицами порядка 10-13 м (в тысячу раз меньших размеров атома — 10-10 м) они не проявляются совсем.

Слабые взаимодействия вызывают взаимные превращения элементарных частиц, определяют радиоактивный распад ядер, реакции термоядерного синтеза.

Они проявляются на ещё меньших расстояниях, порядка 10-17 м.

Ядерные силы — самые мощные в природе.

Если интенсивность ядерных сил принять за единицу, то интенсивность электромагнитных сил составит 10-2, гравитационных — 10-40, слабых взаимодействий — 10-16.

Сильные (ядерные) и слабые взаимодействия проявляются на таких малых расстояниях, когда законы механики Ньютона, а с ними вместе и понятие механической силы теряют смысл.

Интенсивность сильного и слабого взаимодействий измеряется в единицах энергии (в электрон-вольтах), а не единицах силы, и потому применение к ним термина «сила» объясняется многовековой традицией все явления в окружающем мире объяснять действием характерных для каждого явления «сил».

В механике мы будем рассматривать только гравитационные и электромагнитные взаимодействия.

Силы в механике.

В механике обычно имеют дело с тремя видами сил — силами тяготения, силами упругости и силами трения.

Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский

Динамика - Физика, учебник для 10 класса - Класс!ная физика

Основное утверждение механики --- Сила --- Инертность тела. Масса. Единица массы --- Первый закон Ньютона --- Второй закон Ньютона --- Принцип суперпозиции сил --- Примеры решения задач по теме «Второй закон Ньютона» --- Третий закон Ньютона --- Геоцентрическая система отсчёта --- Принцип относительности Галилея. Инвариантные и относительные величины --- Силы в природе --- Сила тяжести и сила всемирного тяготения --- Сила тяжести на других планетах --- Примеры решения задач по теме «Закон всемирного тяготения» --- Первая космическая скорость --- Примеры решения задач по теме «Первая космическая скорость» --- Вес. Невесомость --- Деформация и силы упругости. Закон Гука --- Примеры решения задач по теме «Силы упругости. Закон Гука» --- Силы трения --- Примеры решения задач по теме «Силы трения» --- Примеры решения задач по теме «Силы трения» (продолжение) ---

Устали? - Отдыхаем!

Вверх

class-fizika.ru

Силы в природе

Прежде чем изучать взаимодействие тел, необходимо задаться вопросом: какие вообще существуют виды взаимодействий? Какие существуют силы в природе?

Мы познакомимся с фундаментальными типами взаимодействий, а также с актуальными на сегодняшний день теориями о некоторых видах взаимодействий. В настоящее время, в физике разделяют всего четыре типа фундаментальных сил.

Итак, первый вид сил или первый вид взаимодействия вам хорошо знаком — это гравитационное взаимодействие. В общем и целом, можно сказать, что гравитационные силы действуют между всеми телами, и все тела притягиваются друг к другу. Как правило, гравитационными силами можно пренебречь, если речь не идет об огромных телах, таких как небесные тела (то есть планеты, звезды и так далее).

Второй тип взаимодействия вам тоже хорошо знаком — это электромагнитные силы. Эти силы действуют между всеми частицами, имеющими заряд электрические заряды. Электромагнитные силы, как и гравитационные, тоже имеют обширную сферу действия. Электромагнитное взаимодействие проявляется в любых живых организмах и в любых состояниях вещества.

Существует также, так называемое «сильное взаимодействие» — это проявление ядерных сил, с которыми вы уже немного познакомились, изучая курс физики девятого класса. Эти силы очень кратковременные. Конечно же, область действия ядерных сил не распространяется за пределы атомных ядер. Несмотря на это, ядерные силы очень важны. Именно исходя из знаний о сильном взаимодействии, люди смогли развить такую отрасль, как ядерная энергетика. Разумеется, есть и не самая полезная сторона: например, изобретение ядерного оружия.

Наконец, существует так называемое «слабое взаимодействие» — это взаимодействие, которое вызывает взаимные превращения элементарных частиц. Именно слабое взаимодействие определяет радиоактивный распад и термоядерные реакции. Таким образом, существует четыре типа фундаментальных взаимодействий: гравитационное, электромагнитное, сильное и слабое (последние два вида взаимодействий относятся к ядерным взаимодействиям).

Гравитационное взаимодействие считается самым слабым из всех типов взаимодействий. Однако, оно представляет наибольший интерес на сегодняшний день. До недавнего времени не было известно, какая частица отвечает за массу. Менее двух лет назад, эксперименты, проводимые на большом адронном коллайдере подтвердили существование бозона Хиггса. Именно эта частица отвечает за массу тел, а, следовательно, за гравитационное взаимодействие. Существует также гипотечиская частица, которая называется гравитоном, и, согласно одной из гипотез, она является переносчиком гравитационного взаимодействия.

Еще задолго до открытия элементарных частиц, человечество достаточно хорошо изучило гравитационное взаимодействие небесных тел. Но сегодня, ученые все больше убеждаются, что описание гравитационных взаимодействий на микроскопическом уровне не может быть выполнено с помощью классической теории гравитации, подобно тому, как не все процессы описываются с помощью классической механики Ньютона. Описать гравитационное взаимодействие на микроскопическом уровне уже давно пробуют с помощью квантовой теории гравитации, но она ещё до конца не разработана.

Основными направлениями, пытающимися построить квантовую теорию гравитации, являются две теории: это петлевая квантовая гравитация и теория струн.

Петлевая гравитация отстаивает дискретную структуру пространства и времени. То есть, согласно петлевой гравитации, пространство состоит из мельчайших частичек (которые называются квантовыми ячейками). Эти ячейки соединены друг с другом определенным образом, при котором на микроскопическом уровне, они создают дискретную структуру пространства, а на больших масштабах переходят в гладкую непрерывную структуру.

Теория струн гласит, что пространство и время неделимо, и пронизано некими струнами, с помощью которых и происходят все взаимодействия в так называемом, пространственно-временном континуме. Более подробно с такими понятиями вы познакомитесь при изучении теории относительности. На сегодняшний день нет известного человечеству способа проверить хотя бы одну из этих теорий. Вполне возможно, что и та, и другая теория является правильной. Ведь то же самое произошло при изучении природы света: долгое время ученые спорили о том, что же такое свет: электромагнитная волна или поток фотонов? В итоге, приняли корпускулярно-волновой дуализм, который говорит о том, что свет можно рассматривать и как поток частиц, и как волну.

Электромагнитное взаимодействие отличается тем, что заметно проявляется как макроскопическом уровне, так и на микроскопическом.

Именно это взаимодействие обуславливает изменения агрегатного состояния вещества и химические превращения. Также, электромагнитное взаимодействие может определять ряд физических свойств тела. Например, физический размер атома задан через электрическую постоянную и заряд электрона.

Электромагнитные поля играют огромную роль в жизни небесных тел, в частности, нашей планеты Земля. Как вы знаете, Земля обладает магнитным полем, которое, например, защищает нас от солнечного ветра.

Пожалуй, электромагнитные явления наиболее изучены, среди остальных типов фундаментальных явлений. Эти явления мы подробно будем изучать немного позже.

А сейчас давайте рассмотрим сильные и слабые взаимодействия. Сильные взаимодействия происходят внутри ядер атомов. На таких маленьких расстояниях (то есть порядка 10–15 м), величина сильного взаимодействия между нуклонами становится несоизмеримой, по сравнению с электромагнитным взаимодействием, не говоря уже о гравитационном.

Напомним, что нуклонами называются частицы внутри ядра: протоны и нейтроны. До открытия ядерных сил, ученые долго не могли понять, как ядра атомов остаются стабильными, если протоны, имеющие положительные заряд, должны отталкиваться в результате электромагнитного взаимодействия. Ответ мог быть только один: ядерное взаимодействие значительно сильнее электромагнитного на таких маленьких расстояниях. Именно поэтому, ядерная энергетика получила такое развитие в современном мире: при разрушении ядерных связей выделяется огромное количество энергии. Кроме того, несколько нестабильных нейтронов способны создать цепную реакцию, которая в итоге выльется в колоссальный выброс энергии. Такие реакции называются неуправляемыми ядерными реакциями и используются в военных целях. Разумеется, подобные испытания наносят огромный вред экологии, но есть и полезное применение ядерной физики. Со временем люди научились управлять ядерными реакциями с целью получения полезной энергии. Установки, в которых проходят контролируемые ядерные реакции, называются ядерными реакторами.

Несмотря на то, что человечество с успехом изучило некоторые стороны сильного взаимодействия, чёткой теории о сильном взаимодействии нет. На данный момент, развивающейся и основной теорией, описывающей сильное взаимодействие, является квантовая хромодинамика. Фундаментальная природа сильных взаимодействий в общем и целом понятна, но сопутствующие математические расчеты крайне сложны. Более подробно вы сможете изучить сильное взаимодействие позже.

И, наконец, слабое взаимодействие. Слабые взаимодействия проявляются на еще меньшем расстоянии (порядка 10–18 м). В этом взаимодействии участвуют все фундаментальные лептоны и кварки. Но самое главное, что слабое взаимодействие является единственным, в котором участвуют нейтрино.

Дело в том, что масса и размер нейтрино крайне малы, и нейтрино является электрически нейтральным. Таким образом, эти частицы обладают огромной проникающей способностью: например, через 1 см2 поверхности Земли проходит порядка 60 000 000 000 нейтрино, испущенных Солнцем. Именно слабым взаимодействием обусловлены термоядерные реакции, происходящие внутри звезд. На Солнце происходит так называемый водородный цикл, в результате которого и выделяется столь огромная энергия в течение миллиардов лет.

В этом цикле помимо двух нейтрино, также испускаются и два позитрона. Напомним, что позитрон является античастицой — частицей, «противоположной» электрону. Различные частицы в результате слабого взаимодействия могут обмениваться массами, энергией и электрическим зарядом. Это приводит к тому, что частицы превращаются друг в друга.

Также, как и было сказано в начале, слабое взаимодействие обуславливает радиоактивный распад, с которым вы познакомились в девятом классе. Именно слабое взаимодействие помогло объяснить β-распад. Напомним, что β-распад характеризуется испусканием электрона и антинейтрино из ядра. При этом, один из нейтронов превращается в протон.

Возникает вопрос: откуда электрон и антинейтрино взялись внутри ядра? Только теория слабого взаимодействия помогла понять, что электрон и антинейтрино не находились внутри ядра, а родились в процессе β-распада.

videouroki.net

Силы в Природе

Силы в Природе

Несмотря на разнообразие сил, имеется всего четыре типа взаимодействий: гравитационное, электромагнитное, сильное и слабое.

Гравитационные силы заметно проявляются в космических масштабах. Одним из проявлений гравитационных сил является свободное падение тел. Земля сообщает всем телам одно и то же ускорение, которое называют ускорением свободного падения g. Оно незначительно меняется в зависимости от географической широты. На широте Москвы оно равно 9,8 м/с2.

Электромагнитные силы действуют между частицами, имеющими электрические заряды. Сильные и слабые взаимодействия проявляются внутри атомных ядер и в ядерных превращениях.

Гравитационное взаимодействие существует между всеми телами, обладающими массами. Закон всемирного тяготения, открытый Ньютоном, гласит:

Сила взаимного притяжения двух тел, которые могут быть принятыми за материальные точки, прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними:

sili_v_prirode_renamed_18260.jpg

Коэффициент пропорциональности у называют гравитационной постоянной. Она равна 6,67 • 10-11 Н•м2/кг2.

Если на тело действует лишь гравитационная сила со стороны Земли, то она равна mg. Это и есть сила тяжести G (без учета вращения Земли). Сила тяжести действует на все тела, находящиеся на Земле, вне зависимости от их движения.

При движении тела с ускорением свободного падения (или даже с меньшим ускорением, направленным вниз) наблюдается явление полной или частичной невесомости.

Полная невесомость - отсутствие давления на подставку или на подвес. Вес - сила давления тела на горизонтальную опору или сила растяжения нити со стороны подвешенного к ней тела, которая возникает в связи с гравитационным притяжением данного тела к Земле.

Силы притяжения между телами неуничтожимы, тогда как вес тела может исчезнуть. Так, в спутнике, который двигается с первой космической скоростью вокруг Земли, вес отсутствует так же, как в лифте, падающем с ускорением g.

Примером электромагнитных сил являются силы трения и упругости. Различают силы трения скольжения и силы трения качения. Сила трения скольжения намного больше силы трения качения.

Сила трения зависит в некотором интервале от приложенной силы, которая стремится сдвинуть одно тело относительно другого. Прикладывая различную по величине силу, увидим, что небольшие силы не могут сдвинуть тело. При этом возникает компенсирующая сила трения покоя.

При отсутствии сил, сдвигающих тело, сила трения покоя равна нулю. Наибольшее значение сила трения покоя приобретает в момент, когда одно тело начинает двигаться относительно другого. В этом случае сила трения покоя становится равной силе трения скольжения:

sili_v_prirode.jpg

где n - коэффициент трения, N - сила нормального (перпендикулярного) давления. Коэффициент трения зависит от вещества трущихся поверхностей и их шероховатости.

sfiz.ru