Что такое математика? Математика наука


Презентация по математике "Математика наука"

Презентация на тему: Математика наука

Скачать эту презентацию

Скачать эту презентацию

№ слайда 1 Описание слайда:

«О математика»

№ слайда 2 Описание слайда:

Математика - самая древняя из наук, она была и остаётся необходимой людям. Слово «математика» греческого происхождения. Оно означает «наука», «размышления». В древности часто полученные знания, открытия старались сохранить в тайне. Например, в школе Пифагора запрещено было делиться своими записями с непифогорцами. За нарушение этого правила один из учеников, требовавший свободного обмена знаниями, - Гиппас был изгнан из школы. Сторонников Гиппаса стали называть математиками, т.е. приверженцами науки. Все без исключения начинают изучать основы математики уже с первых классов школы, потому что эта наука нужна всем, особенно сейчас, когда математика проникла во все отрасли знаний – физику и химию, науки о языке и медицину астрономию и биологию и т.д. Математики учат вычислительные машины сочинять стихи и музыку, измерять размеры атомов и проектировать плотины электростанций. Математика необходима в любой профессии, какую бы вы не выбрали для себя. Но кроме того, вы могли заметить: это и очень интересная и удивительная наука. Любите её. Если вы и не станете математиками, знания пригодятся вам и на Земле, и в космосе.

№ слайда 3 Описание слайда:

Учёные о математике.

№ слайда 4 Описание слайда:

«Математика-это искусство давать разным вещам одно наименование» А. Пуанкаре

№ слайда 5 Описание слайда:

От числа одну восьмуювзяв, прибавь ты к ней любуюполовинку от трёхсот,и восьмушка превзойдётне чуть-чуть – на пятьдесяттри четвёртых. Буду рад,если тот, кто знает счёт,мне число то назовёт. Иоганн Хемешнг

№ слайда 6 Описание слайда:

Каждая задача, которую я решал, становилась правилом, служившим в последствии для решения других задач. Рене Декарт

№ слайда 7 Описание слайда:

Существует ещё одна причина, по которой математику надлежит ценить высоко: именно математика придаёт естественным наукам степень достоверности, недостижимую без неё Альберт Эйнштейн

№ слайда 8 Описание слайда:

Я люблю математику не только по тому, что она находит применение в технике, но и потому, что она красива. Роже Петер

№ слайда 9 Описание слайда:

Предмет математики столь серьёзен, что не следует упускать ни одной возможности сделать его более занимательным. Блез Паскаль

№ слайда 10 Описание слайда:

Умение решать задачи – такое же практическое искусство, как умение плавать или бегать на лыжах. Ему можно научиться только путём подражания или упражнения. Дьердо Пойа.

№ слайда 11 Описание слайда:

Математика принадлежит к числу наук, имеющих громадное значение для выработки умения логически мыслить, делать обобщения. Н.К.Крупская

№ слайда 12 Описание слайда:

Природа говорит языком математики:буквы этого языка – круги, треугольники и иные математические фигуры. Г.Галилей

№ слайда 13 Описание слайда:

Математика – царица наук.Арифметика – царица математики. К.Ф.Гаусс

№ слайда 14 Описание слайда:

«Мир построен на силе чисел» Пифагор

№ слайда 15 Описание слайда:

Природа говорит языком математики: буквы этогоязыка – круги, треугольники ииные математическиефигуры. Галилей

№ слайда 16 Описание слайда:

«Математику уже затемучить надо, что она ум в порядокприводит» М.В.Ломоносов

№ слайда 17 Описание слайда:

Мой друг! Знаешь ты ужеВычитанье и сложенье,Умноженье и деленьеПросто всем на удивленье.Так дерзай! Пусть славы эхоО твоих гремит успехах.Станешь ты, хоть скромен вид,Знаменитей, чем Евклид! Л.Кэррол.

№ слайда 18 Описание слайда:

Предмет математики настолько серьёзен, что нужноне упускать случая делать егонемного занимательным. Паскаль

№ слайда 19 Описание слайда:

«Куб, однако, на два куба, илиКвадратоквадрат на дваКвадратоквадрата и вообщеНикакую до бесконечности сверхКвадрата степень в две того названияНевозможно разделить» Ферма Пьер

№ слайда 20 Описание слайда:

И прекрасна и сильнаматематика страша!Тут везде идёт работавсё подсчитывают что-то,всюду можно услыхать:«раз, два, три, четыре, пять»на страшище двадцать пятьзолотые дыни делятна страшище пятьдесятумножают поросятна страшище двести десятьтрёх слонов сумели взвеситьинтересно с человеком поработать – посчитать.Прибавлять плотины к рекама пустыни – вычитать!Умножать сады и школы, дачи, шахты, ледоколы,а потом делить на всех и богатство и успех!!! Владимир Гальба

№ слайда 21 Описание слайда:

«Бороться и искать, найти и не сдаваться» Скотт

№ слайда 22 Описание слайда:

Число есть мышленья начало и конец,Вместе с мыслью рождается число,Не поднимается мысль выше числа. Миттаг – Леффлер, Магнус Густав.

№ слайда 23 Описание слайда:

Думы нездешней полна,Чуть загрустив отчего – то,Молча стоит у окна,В мыслях – расчёты, расчёты…Да, математике надоМир постигать наш – и вотСтрасть отстранённого взглядаВ прорву пространства войдёт.Пусть её взгрустнётся немножко,Жалобы не услыхать…Строгая, смотрит в окошко,Сущее хочет познать. (Из стихотворения В.Михалковского «Математика»).

№ слайда 24 Описание слайда:

Стихи о математике.

№ слайда 25 Описание слайда:

Класная математика.Если хочешь много знать,Поскорей учись считать!Чтоб математику запомнить,Научился я… летать!Как взлечу под потолок – раз,Да махну через порог – два,Вылетаю за окошко – три,Курс держу я на лужок – четыре.Математика дружок – Это знаний огромный мешок!Там примеры, там задачиМожно всё решить иначе.Можно всё пересчитатьИ таблицу умножения знать на 5.Вот такие вот дела,Значит математика нам всем нужна! Малахова Катя

№ слайда 26 Описание слайда:

Что когда чему равно,Знать не каждому дано.И не всем дано понять,Что, когда и с чем равнять.Нелегко найти ответ:То равно, а это нет,Знаю я ответ к задаче,Только это мой секрет! Сомов Всеволод

№ слайда 27 Описание слайда:

Цифра вроде буквы «О» -Это ноль иль ничего.Круглый ноль такой хорошенький,Но не значит ничегошеньки.Если ж с лева рядом с нимЕдиницу поместим,Он побольше станет весить,Потому что это десять. Верескун Катя

№ слайда 28 Описание слайда:

Я – киска – робот заводнойНо я совсем и не простойЯ математический и геометрический,В математику свою я всегда влюбляюсьЛюблю считать, люблю решать,Люблю задачи выполнять,Как зададут контрольнуюТак сразу отключаюсь! Тажибаева Роза

№ слайда 29 Описание слайда:

Не умели б мы считатьНе знали б сколько 2х5И сколько денег надо дать,Чтоб в магазине хлеба взятьБез геометрии нельзяУглы и градусы бедаВедь чуть от курса отойдёшьДа, без математики бедаНе поедут машины и поездаНе узнать ширины и глубиныЗнать математику мы все должны. Салазкина Катя

№ слайда 30 Описание слайда:

Чтоб водить корабли,Чтоб в небо взлететь,Надо многое знать,Надо много уметь.И при этом, и приэтомВы поймё - те – каОчень важная наукаМатема – ти – ка.Чтобы умными нам быть,Мы должны её учитьИ пятёрки получать.Будет знанья выше гор,Станем мы как Пифагор. Золотухина Наталья

№ слайда 31 Описание слайда:

Важная наука.Друг мой! Знаешь ты ужеВычитанье и сложенье,Умноженье и деленьеПросто всем на удивление.Славу ты не упускай!Так дерзай и не сдавайся.Станешь ты, хоть скромен видЗнаменитей чем Евклид! Шестаковой Натальи

ppt4web.ru

математика - это... Что такое математика?

  • математика — математика …   Нанайско-русский словарь

  • МАТЕМАТИКА — Между духом и материей посредничает математика. Хуго Штейнхаус Подобно тому как все искусства тяготеют к музыке, все науки стремятся к математике. Джордж Сантаяна Он стал поэтом для математика у него не хватало фантазии. Давид Гильберт об одном… …   Сводная энциклопедия афоризмов

  • МАТЕМАТИКА — (греч.). Наука о величинах, вообще о том, что можно выразить цифрами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МАТЕМАТИКА греч. mathematike, от mathema, ta mathemata, выученное, наука, знание, от manthano,… …   Словарь иностранных слов русского языка

  • МАТЕМАТИКА — наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о… …   Философская энциклопедия

  • МАТЕМАТИКА — (греч. mathematike от mathema наука), наука, в которой изучаются пространственные формы и количественные отношения. До нач. 17 в. математика преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах;… …   Большой Энциклопедический словарь

  • МАТЕМАТИКА — МАТЕМАТИКА, математики, мн. нет, жен. (греч. mathematike). Цикл наук, изучающих величины и пространственные формы (арифметика, алгебра, геометрия, тригонометрия и т.д.). Чистая математика. Прикладная математика. Высшая математика. Толковый… …   Толковый словарь Ушакова

  • МАТЕМАТИКА — (от греческого mathema знание, учение, наука), наука о количественных отношениях и пространственных формах окружающего нас мира. Понимание самостоятельного положения математики как особой науки возникло в Древней Греции в 6 5 вв. до нашей эры.… …   Современная энциклопедия

  • МАТЕМАТИКА — жен. наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. чистая, занимается величинами отвлеченно; прикладная, прилагает первую к делу, к предметам. Математика делится на арифметику и геометрию, первая… …   Толковый словарь Даля

  • Математика — (от греческого mathema знание, учение, наука), наука о количественных отношениях и пространственных формах окружающего нас мира. Понимание самостоятельного положения математики как особой науки возникло в Древней Греции в 6 5 вв. до нашей эры.… …   Иллюстрированный энциклопедический словарь

  • Математика —  Математика  ♦ Mathématique    Первоначально наука о величинах, фигурах и числах (см. Аристотель, «Метафизика», книга 13 (М), глава 3). Затем, и чем дальше, тем больше – наука, позволяющая дедуктивно гипотетически осмыслить или вычислить… …   Философский словарь Спонвиля

  • МАТЕМАТИКА — МАТЕМАТИКА, наука, изучающая свойства чисел, пространства и формы, а также делающая дедуктивные предположения по поводу абстрактных категорий. Часто делится на чистую математику, рассматривающую исключительно абстрактные доказательства аксиом, и… …   Научно-технический энциклопедический словарь

  • dic.academic.ru

    Математика – наука о жизни // Очевидное-Невероятное ≪ ∀ x, y, z

    Беседа С.П. Капицы с В.И. Арнольдом к 100-летию А.Н. Колмогорова.

    Похожее

    • Владимир Успенский

      Лекция прочитана 4 июля 2006 года в поселке Московский в рамках II конференции лауреатов Всероссийского конкурса учителей математики и физики фонда «Династия».
    • Владимир Арнольд

      Сборник «Задачи для детей от 5 до 15 лет» вызвал много отзывов. И дети, и взрослые читатели часто сожалели, что там были только математические задачи, — ведь и все естествознание заслуживает столь же активного, творческого к себе отношения. Теперь я отвечаю на эти пожелания — следуя скорее Яну Амосу Каменскому, чем современным педагогам, то есть всегда стремясь быть понятным читателю, не имеющему предварительных знаний (но столь же любознательному, как большинство подростков).
    • Математик, руководитель Департамента математики факультета экономики ВШЭ о проблемах российского образования, предсказаниях биржи и качествах ученого

    • Что бывает, когда ты никому не можешь доверять, кроме математики? В биографической истории Уолтера Питтса, основателя компьютерной нейролингвистики, всё настоящее — и наука, и дружба, и великие открытия, и одиночество вместе с депрессией. Увы, предательство своего первого верного друга, математики, он не стерпел.
    • О Москве, математике и музыке мы поговорили с Александром Буфетовым, ведущим научным сотрудником Математического института имени В.А. Стеклова, ведущим научным сотрудником ИППИ имени А.А. Харкевича, профессором факультета математики Высшей школы экономики, директором исследований Национального центра научных исследований во Франции (CNRS).
    • Документальная картина, снятая профессиональным математиком-режиссером Екатериной Еременко — замочная скважина, через которую зритель лишь мельком заглядывает в многомерные вселенные, рождающиеся в головах математиков. И еще больше убеждает нас в общепринятом представлении, что они — люди с других планет. Фильм состоит из нескольких новелл. По одной на каждое чувство: вкус, зрение, обоняние, осязание, слух и чувство баланса. Шесть героев, шесть гениев математики изучают окружающий мир посредством шести чувств, рассказывая о своем восприятии любимой науки.
    • Я давно хотела попасть в Летнюю школу «Современная математика» возле Дубны, которую вот уже 12-й год проводят Московский центр непрерывного изучения математики и Математический институт РАН. Как-то не получалось. В 2009 году я собрала отклики преподавателей и организаторов о Школе, которые говорили о том, как там здорово и интересно. Меня туда приглашал один из ее организаторов, человек, без сомнения, бывший душой Школы — Владимир Игоревич Арнольд. В этом году я решила, что надо, наконец, посмотреть, где же математики проводят лучшую часть лета, и, может быть, найти то место, где находится часть души Арнольда.
    • Пифагорейцы утверждали, что числа правят миром, а Александр Суворов называл математику «гимнастикой ума». Сейчас интерес к этой науке постепенно возрождается. T&P поговорили с пятью известными математиками, чтобы разобраться, зачем формулы и уравнения нужны в повседневной жизни, почему математика — интересный и творческий предмет, и что теряет гуманитарий, отмахиваясь от этой науки.
    • Лада Шиповалова

      Такого рода вопросы часто слышны от студентов, ученых, философов. Порой они возникают и у того, кто называется философом науки. Но иногда подобные рассуждения сопровождает глубокое убеждение о том, что философия, а также философия науки актуальны и выживают вне зависимости от перипетий научной и образовательной политики. Действительно ли это так? И почему философия науки не является ни «пятым колесом в телеге», ни «сферическим конем в вакууме»? На эти и другие вопросы даст подробный ответ Лада Владимировна Шиповалова, доцент кафедры философии науки и техники, доктор философских наук, лектор Открытого Философского Факультета.

    • Владимир Арнольд

      Я собираюсь рассказать сегодня о довольно грустных обстоятельствах, связанных с положением математического образования во всем мире. Больше всего я знаю положение, естественно, в России, а также во Франции и в Соединенных Штатах. Но процессы, о которых я буду говорить, примерно одновременно идут во всем мире. Они несколько невероятны, но то, что я буду рассказывать, как бы это ни было невероятно, — чистая правда.

    Далее >>>

    forany.xyz

    МАТЕМАТИКА - это... Что такое МАТЕМАТИКА?

  • математика — математика …   Нанайско-русский словарь

  • МАТЕМАТИКА — Между духом и материей посредничает математика. Хуго Штейнхаус Подобно тому как все искусства тяготеют к музыке, все науки стремятся к математике. Джордж Сантаяна Он стал поэтом для математика у него не хватало фантазии. Давид Гильберт об одном… …   Сводная энциклопедия афоризмов

  • МАТЕМАТИКА — (греч.). Наука о величинах, вообще о том, что можно выразить цифрами. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. МАТЕМАТИКА греч. mathematike, от mathema, ta mathemata, выученное, наука, знание, от manthano,… …   Словарь иностранных слов русского языка

  • МАТЕМАТИКА — наука, или группа наук, о познаваемых разумом многообразиях и структурах, специально – о математических множествах и величинах; напр., элементарная математика – наука о числовых величинах (арифметика) и величинах пространственных (геометрия) и о… …   Философская энциклопедия

  • МАТЕМАТИКА — (греч. mathematike от mathema наука), наука, в которой изучаются пространственные формы и количественные отношения. До нач. 17 в. математика преимущественно наука о числах, скалярных величинах и сравнительно простых геометрических фигурах;… …   Большой Энциклопедический словарь

  • МАТЕМАТИКА — МАТЕМАТИКА, математики, мн. нет, жен. (греч. mathematike). Цикл наук, изучающих величины и пространственные формы (арифметика, алгебра, геометрия, тригонометрия и т.д.). Чистая математика. Прикладная математика. Высшая математика. Толковый… …   Толковый словарь Ушакова

  • МАТЕМАТИКА — жен. наука о величинах и количествах; все, что можно выразить цифрою, принадлежит математике. чистая, занимается величинами отвлеченно; прикладная, прилагает первую к делу, к предметам. Математика делится на арифметику и геометрию, первая… …   Толковый словарь Даля

  • Математика — (от греческого mathema знание, учение, наука), наука о количественных отношениях и пространственных формах окружающего нас мира. Понимание самостоятельного положения математики как особой науки возникло в Древней Греции в 6 5 вв. до нашей эры.… …   Иллюстрированный энциклопедический словарь

  • Математика —  Математика  ♦ Mathématique    Первоначально наука о величинах, фигурах и числах (см. Аристотель, «Метафизика», книга 13 (М), глава 3). Затем, и чем дальше, тем больше – наука, позволяющая дедуктивно гипотетически осмыслить или вычислить… …   Философский словарь Спонвиля

  • МАТЕМАТИКА — МАТЕМАТИКА, наука, изучающая свойства чисел, пространства и формы, а также делающая дедуктивные предположения по поводу абстрактных категорий. Часто делится на чистую математику, рассматривающую исключительно абстрактные доказательства аксиом, и… …   Научно-технический энциклопедический словарь

  • dic.academic.ru

    Что такое математика?

    Однозначного ответа на вопрос о том, что такое математика, даже сегодня еще не существует, несмотря на то, что данная наука зародилась достаточно давно, практически на заре цивилизации. На протяжении всего времени она обогащалась, все больше при этом утверждаясь и обновляясь в качестве способа познания закономерностей окружающего мира.

    Благодаря расширению и изменению многогранных связей математики с практикой, человечеству предоставляется уникальная возможность открывать и использовать те или иные законы природы. В нынешнее время она является поистине могучим и мощным двигателем техники и науки.

    Что такое математика? Интересует это многих, но ответить на данный вопрос непросто. Безусловно, каждый способен дать свой собственный ответ, который будет зависеть от уровня его математических знаний. Для ученика средней школы это обобщенное название арифметики, алгебры, геометрии и начал анализа. Для студента технического ВУЗа это – наука, состоящая из нескольких десятков отдельных разделов.

    Следует отметить, что число таких разделов со временем неустанно увеличивается, так как по мере своего развития современная математика постоянно обогащается новыми сведениями. Ну, а для маленького ребенка эта наука заключается в умении считать. Тем не менее, вся наша жизнь неразрывно связана с решением разнообразных математических задач.

    Аналогично определению, что такое математика, не существует и общепринятого четкого определения предмета данной науки. В прошлом считалось, что решение таких задач заключается в измерении величин либо чисел. Но спустя некоторое время возникло определение математики как учения о бесконечных величинах.

    Современный мир рассматривает математику как науку о математических структурах. Данный термин был введен группой французских математиков, известных миру под псевдонимом Бурбаки.

    Данная наука не является произвольным творением мысли. Она отображает объективный мир в несколько абстрактном виде. Ее изучения основаны на понятиях, полученных путем абстрагирования от явлений непосредственно реального мира и, кроме того, от предыдущих абстракций.

    Возникновение таких абстракций тесно связано с реальной действительностью. Более того, после решения той или иной математической задачи ее результат фиксируется, а затем применяется к различным явлениям, физическая природа которых существенно отличается друг от друга.

    К примеру, изучение математики нередко сводится к решению конкретных задач: как найти скорость размножения бактерий, как изменяется атмосферное давление, или как определить скорость радиоактивного распада. При этом решение всех этих задач сводится к одному и тому же дифференциальному уравнению.

    Подобную абстрактность довольно сложно не только понять, но и прочувствовать взрослому, а тем более ученику. Именно поэтому так важно сделать изучение математики доступным каждому. А для этого требуется соблюсти баланс конкретики и абстракции, интуитивности и строгости, не утратив легкости объяснений сложных понятий.

    Безусловно, сегодня трудно найти кого-то, кто не имел бы представления о том, что такое математика. Но, как правило, многие ошибочно полагают, что это всего лишь арифметика, подразумевающая изучение чисел и определенных действий с их помощью, таких, как умножение или деление.

    Но если углубиться в данную науку, можно понять, что на самом деле это понятие намного объемнее. Ведь математика является своеобразным способом описания мира и сочетания одних его частей с другими. В математических символах, описывающих Вселенную, выражаются взаимоотношения чисел.

    Но как понять математику? Это уже отдельный вопрос. Подобный процесс требует терпения, желания и внимания. Однако все не так сложно. Каждому свойственно преуспевать в математике, поскольку доказано, что «ощущение числа» является врожденной способностью.

    Никакого результата зазубривание аксиом, теорем и заучивание формул, к сожалению, не даст. Главное – это понимать суть математической теории и ее законов. И особого внимания требует умение делать выводы из тех утверждений, которые были поставлены.

    fb.ru

    МАТЕМАТИКА - это... Что такое МАТЕМАТИКА?

    - наука о количественных отношениях и пространственных формах действительного мира. В неразрывной связи с запросами техники и естествознания запас количественных отношений и пространственных форм, изучаемых М., непрерывно расширяется, так что это общее определение М. наполняется все более богатым содержанием.

    Ясное понимание самостоятельного положения М. как особой науки стало возможным только после накопления достаточно большого фактич. материала и возникло впервые в Др. Греции в 6-5 вв. до н. э. Развитие М. до этого времени естественно отнести к периоду зарождения математики, а к 6 -5 вв. до н. э. приурочить начало периода элементарной математики. В течение этих двух первых периодов математич. исследования имеют дело почти исключительно с весьма ограниченным запасом основных понятий, возникших еще на очень ранних ступенях историч. развития в связи с самыми простыми запросами хозяйственной жизни. Первые задачи механики и физики могли еще удовлетворяться этим же запасом основных математич. понятий.

    В 17 в. новые запросы естествознания и техники заставляют математиков сосредоточить свое внимание на создании методов, позволяющих математически изучать движение, процессы изменения величин, преобразования геометрич. фигур. С употребления переменных величин в аналитич. еометрии и создания дифференциального и интегрального исчисления начинается период математики переменных величин.

    Дальнейшее расширение круга количественных отношений и пространственных форм, изучаемых М., привело в нач. 19 в. к необходимости отнестись к процессу расширения предмета математич. исследований сознательно, поставив перед собой задачу систематич. изучения с достаточно общей точки зрения возможных типов количественных отношений и пространственных форм. Создание "воображаемой геометрии" Лобачевского было первым значительным шагом в этом направлении. Развитие подобного рода исследований внесло в М. столь важные новые черты, что М. 19 и 20 вв. естественно отнести к особому периоду современной математики.

    1. Зарождение математики. Счет предметов на самых ранних ступенях развития культуры привел к созданию простейших понятий арифметики натуральных чисел. Только на основе разработанной системы устного счисления возникают письменные системы счисления и постепенно вырабатываются приемы выполнения над натуральными числами четырех арифметич. действий. Потребности измерения (количества зерна, длины дороги и т. п.) приводят к появлению названий и обозначений простейших дробных чисел и к разработке приемов выполнения арифметич. действий над дробями. Таким образом накапливается материал, складывающийся постепенно в древнейшую математич. науку - арифметику. Измерение площадей и объемов, потребности строительной техники, а несколько позднее астрономии вызывают развитие начатков геометрии. Эти процессы шли у многих народов в значительной степени независимо и параллельно. Особенное значение для дальнейшего развития науки имело накопление арифметич. и геометрич. знаний в Египте и Вавилонии. В Вавилонии на основе развитой техники арифметич. вычислений появились также начатки алгебры, а в связи с запросами астрономии - начатки тригонометрии.

    2. Период элементарной математики. Только после накопления большого конкретного материала в виде разрозненных приемов арифметич. вычислений, способов определения площадей и объемов и т. п. возникает М. как самостоятельная наука с ясным пониманием своеобразия ее метода и необходимости систематич. развития ее основных понятий и предложений в достаточно общей форме. В применении к арифметике и алгебре указанный процесс начался уже в Вавилонии. Однако вполне определилось это новое течение, заключавшееся в систематическом и логически последовательном построении основ математич. науки, в Др. Греции. Созданная древними греками система изложения элементарной геометрии на два тысячелетия вперед сделалась образцом дедуктивного построения математич. теории. Из арифметики постепенно вырастает чисел теория. Создается систематич. учение о величинах и измерении. Процесс формирования (в связи с задачей измерения величин) понятия действительного числа (см. Число).оказывается весьма длительным. Дело в том, что понятия иррационального и отрицательного чисел относятся к более сложным математич. абстракциям, к-рые, в отличие от понятий натурального числа, дроби или геометрич. фигуры, не имеют достаточно прочной опоры в донаучном общечеловеческом опыте. Создание алгебры как буквенного исчисления завершается лишь в конце рассматриваемого периода. Период элементарной математики заканчивается (в Зап. Европе в нач. 17 в.), когда центр тяжести математич. интересов переносится в область М. переменных величин.

    3. Период создания математики переменных величин. С 17 в. начинается существенно новый период развития М. Круг количественных отношений и пространственных форм, изучаемых теперь М., уже не исчерпывается числами, величинами и геометрич. фигурами. В основном это было обусловлено явным введением в М. идей движения и изменения. Уже в алгебре в скрытом виде содержится идея зависимости между величинами (значение суммы зависит от значений слагаемых и т. д.). Однако чтобы охватить количественные отношения в процессе их изменения, надо было самые зависимости между величинами сделать самостоятельным объектом изучения. Поэтому на первый план выдвигается понятие функции, играющее в дальнейшем такую же роль основного и самостоятельного предмета изучения, как ранее понятия величины или числа. Изучение переменных величин и функциональных зависимостей приводит далее к основным понятиям математич. анализа, вводящим в М. в явном виде идею бесконечного, к понятиям предела, производной, дифференциала и интеграла. Создается анализ бесконечно малых, в первую очередь в виде дифференциального исчисления и интегрального исчисления, позволяющий связывать конечные изменения переменных величин с их поведением в непосредственной близости отдельных принимаемых ими значений. Основные законы механики и физики записываются в форме дифференциальных уравнений, и задача интегрирования этих уравнений выдвигается в качестве одной из важнейших задач М. Разыскание неизвестных функций, определенных условиями другого рода (условиями минимума или максимума нек-рых связанных с ними величин), составляет предмет вариационного исчисления. Таким образом, наряду с уравнениями, в к-рых неизвестными являются числа, появляются уравнения, в к-рых неизвестны и подлежат определению функции.

    Предмет изучения геометрии также существенно расширяется с проникновением в геометрию идей движения и преобразования фигур. Геометрия начинает изучать движения и преобразования сами по себе. Напр., в проективной геометрии одним из основных объектов изучения являются сами проективные преобразования плоскости или пространства. Впрочем, сознательное развитие этих идей относится лишь к кон. 18 и нач. 19 вв. Гораздо раньше, с созданием в 17 в. аналитической геометрии, принципиально изменилось отношение геометрии к остальной М.: был найден универсальный способ перевода вопросов геометрии на язык алгебры и анализа и решения их чисто алгебраич. и аналитич. методами, а с другой стороны, открылась широкая возможность изображения (иллюстрирования) алгебраич. и аналитич. фактов геометрически, напр. при графич. изображении функциональных зависимостей.

    4. Современная математика. Все созданные в 17 и 18 вв. разделы математич. анализа продолжали с большой интенсивностью развиваться в 19 и 20 вв. Чрезвычайно расширился за это время и круг их применения к задачам, выдвигаемым естествознанием и техникой. Однако помимо этого количественного роста с кон. 18 и в нач. 19 вв. в развитии М. наблюдается и ряд существенно новых черт.

    Накопленный в 17 и 18 вв. огромный фактич. материал привел к необходимости углубленного логич. анализа и объединения его с новых точек зрения. Связь М. с естествознанием, оставаясь по существу не менее тесной, приобретает теперь более сложные формы. Большие новые теории возникают не только в результате непосредственных запросов естествознания и техники, но также из внутренних потребностей самой М. Таково в основном было развитие функции комплексного переменного теории, занявшей в нач. и сер. 19 в. центральное положение во всем математич. анализе. Другим замечательным примером теории, возникшей в результате внутреннего развития самой М., явилась Лобачевского геометрия.

    В более непосредственной и непрерывной зависимости от запросов механики и физики происходило формирование векторного и тензорного исчислений. Перенесение векторных и тензорных представлений на бесконечномерные величины происходит в рамках функционального анализа и тесно связывается с потребностями современной физики.

    Таким образом, в результате как внутренних потребностей М., так и новых запросов естествознания круг количественных отношений и пространственных форм, изучаемых М., чрезвычайно расширяется; в него входят отношения, существующие между элементами произвольной группы, векторами, операторами в функциональных пространствах, все разнообразие форм пространств любого числа измерений и т. п.

    Существенная новизна начавшегося в 19 в. этапа развития М. состоит в том, что вопросы необходимого расширения круга подлежащих изучению количественных отношений и пространственных форм становятся предметом сознательного и активного интереса математиков. Если прежде, напр., введение в употребление отрицательных и комплексных чисел и точная формулировна правил действий с ними требовали длительной работы, то теперь развитие М. потребовало выработки приемов сознательного и планомерного создания новых геометрия, и алгебраич. систем.

    Чрезвычайное расширение предмета М. привлекло в 19 в. усиленное внимание к вопросам ее "обоснования", т. е. критич. пересмотру ее исходных положений (аксиом), построению строгой системы определений и доказательств, а также критич. рассмотрению логич. приемов, употребляемых при этих доказательствах. Стандарт требований к логич. строгости, предъявляемых к практич. работе математиков над развитием отдельных математич. теорий, сложился только к кон. 19 в. Глубокий и тщательный анализ требований к логич. строгости доказательств, строения математич. теорий, вопросов алгоритмич. разрешимости и неразрешимости математич. проблем составляет предмет математической логики.

    В нач. 19 в. происходит новое значит. расширение области приложений математич. анализа. Если до этого времени основными отделами физики, требовавшими большого математич. аппарата, оставались механика и оптика, то теперь к ним присоединяются электродинамика, теория магнетизма и термодинамика. Получают широкое развитие важнейшие разделы механики непрерывных сред. Быстро растут и математич. запросы техники. В качестве основного аппарата новых областей механики и математич. физики усиленно разрабатывается теория дифференциальных уравнений обыкновенных, дифференциальных уравнений с частными производными и математической физики уравнений.

    Теория дифференциальных уравнений послужила отправным пунктом исследований по топологии многообразий. Здесь получили свое начало "комбинаторные", "гомологические" и "гомотопические" методы алгебраической топологии. Другое направление в топологии возникло на почве множеств теории и функционального анализа и привело к систематич. построению теории общих топологических пространств.

    Существенным дополнением к методам дифференциальных уравнений при изучении природы и решении технич. задач являются методы вероятностей теории. Если в нач. 19 в. главными потребителями вероятностных методов были теория артиллерийской стрельбы и теория ошибок, то в кон. 19 и в нач. 20 вв. теория вероятностей получает много новых применений благодаря созданию теории случайных процессов и развитию аппарата математической статистики.

    Теория чисел, представлявшая собрание отдельных результатов и идей, с 19 в. развивалась в различных направлениях как стройная теория (см. Алгебраическая теория чисел, Аналитическая теория чисел, Диофантовы приближения).

    Центр тяжести алгебраич. исследований переносится в новые области алгебры: теорию групп, полей, колец, общих алгебраич. систем. На границе между алгеброй и геометрией возникает теория непрерывных групп, методы к-рой позднее проникают во все новые области М. и естествознания.

    Элементарная и проективная геометрия привлекают внимание математиков гл. образом под углом зрения изучения их логич. и аксиоматич. основ. Но основными отделами геометрии, где сосредоточиваются наиболее значительные научные силы, становятся дифференциальная геометрия, алгебраическая геометрия, риманова геометрия.

    В результате систематич. построения математич. анализа на основе строгой арифметич. теории иррациональных чисел и теории множеств возникла функций действительного переменного теория.

    Практич. использование результатов теоретического математич. исследования требует получения ответа на поставленную задачу в числовой форме. Между тем даже после исчерпывающего теоретич. разбора задачи это часто оказывается весьма трудным делом. Зародившиеся в кон. 19 и в нач. 20 вв. численные методы анализа и алгебры выросли в связи с созданием и использованием ЭВМ в самостоятельную ветвь М.- вычислительную математику.

    Отмеченные основные особенности современной М. и перечисленные основные направления исследований М. по разделам сложились в нач. 20 в. В значительной мере это деление на разделы сохраняется, несмотря на стремительное развитие М. в 20 в. Однако потребности развития самой М., "математизация" различных областей науки, проникновение математич. методов во многие сферы практич. деятельности, быстрый прогресс вычислит. техники привели к перемещению основных усилий математиков внутри сложившихся разделов М. и к появлению целого ряда новых математич. дисциплин (см., напр., Автоматов теория, Информации теория, Игр теория, Исследование операций, а также Кибернетика, Математическая экономика). На основе задач теории управляющих систем, комбинаторного анализа, теории графов, теории кодирования возник дискретный анализ. Вопросы о наилучшем (в том или ином смысле) управлении физич. или механич. системами, описываемыми дифференциальными ур-ниями, привели к созданию оптимального управления математической теории.

    Исследования в области общих проблем управления и связанных с ними областях М. в соединении с прогрессом вычислит, техники дают основу для автоматизации новых сфер человеческой деятельности.

    По материалам статьи А. Н. Колмогорова[1]. Лит.:[1] Колмогоров А. Н., Математика, в кн.: Большая Советская Энциклопедия, 2 изд., т. 26, М., 1954; [2] Виноградов И. М., Математика и научный прогресс, в кн.: Ленин и современная наука, кн. 2, М., 1970; [3] Гильберт Д., Бернайс П., Основания математики. Логические исчисления и формализация арифметики, пер. с нем., М., 1979; [4] Математика, ее содержание, методы и значение, т. 1-3, М.,1956; [5] История математики с древнейших времен до начала XIX столетия, т. 1-3, М., 1970-72; [6] Математика XIX века. Математическая логика. Алгебра. Теория чисел. Теория вероятностей, М., 1978; [7] Математика ХIХ века. Геометрия. Теория аналитических функций, М., 19.81; [8] С т р о й к Д. Я., Краткий очерк истории математики, пер. с нем., 3 изд., М., 1978; [9] Марджанишвили К. К., Математика в Академии наук СССР, "Вестн. АН СССР", 1974, № 6; [10] W е у l Н., A Half-century of mathematics, "Amer. Math. Monthly", 1951, v. 58, № 8.

    Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.

    dic.academic.ru

    Математика — гуманитарная наука? - Телеканал «Наука»

    Если вы когда-нибудь задумывались над вопросом о том, зачем в самом деле гуманитарию нужна математика (или пытались объяснить это своим детям), то книга «Апология математики» Владимира Успенского расставит все точки над «i». В этом отрывке выдающийся профессор математики объясняет, что общего у физиков и лириков.

    Никто не знает, сохранят ли грядущие века и тысячелетия сегодняшнее деление наук на естественные и гуманитарные. Но даже и сегодня безоговорочное отнесение математики к естественным наукам вызывает серьёзные возражения. Естественно-научная, прежде всего физическая, составляющая математики очевидна, и нередко приходится слышать, что математика — это часть физики, поскольку она, математика, описывает свойства внешнего, физического мира. Но с тем же успехом её можно считать частью психологии, поскольку изучаемые в ней абстракции суть явления нашего мышления, а значит, должны проходить по ведомству психологии. Не менее очевидна и логическая, приближающаяся к философской, составляющая математики. Скажем, знаменитую теорему Гёделя о неполноте, гласящую, что, какие способы доказывания ни установи, всегда найдётся истинное, но не доказуемое утверждение — причём даже среди утверждений о таких, казалось бы, простых объектах, как натуральные числа, — эту теорему с полным основанием можно считать теоремой теории познания.

    В 1950-х гг. по возвращении с индийских научных конференций мои московские коллеги-математики с изумлением рассказывали, что в Индии математику — при стандартном разделении наук на естественные и гуманитарные — относят к наукам гуманитарным. И на этих конференциях им приходилось сидеть рядом не с физиками, как они привыкли, а с искусствоведами. К великому сожалению, у людей гуманитарно ориентированных математика нередко вызывает отторжение, а то и отвращение. Неуклюжее (и по содержанию, и по форме) преподавание математики в средней школе немало тому способствует.

    Лет сорок назад было модно подчёркивать разницу между так называемыми физиками (к коим относили и математиков) и так называемыми лириками (к коим причисляли всех гуманитариев). Терминология эта вошла тогда в моду с лёгкой руки поэта Бориса Слуцкого, провозгласившего в 1959 г. в культовом стихотворении «Физики и лирики»:

    Что-то физики в почёте,

    Что-то лирики в загоне.

    Дело не в сухом расчёте,

    Дело в мировом законе.

    Однако само противопоставление условных физиков условным лирикам вовсе не было вечным. По преданию, на воротах знаменитой Академии Платона была надпись: «Негеометр [нематематик. — В. У.] да не войдёт сюда!» С другой стороны, самоё математику можно называть младшей сестрой гуманитарной дисциплины юриспруденции: ведь именно в юридической практике Древней Греции, в дебатах на народных собраниях впервые возникло и далее шлифовалось понятие доказательства.

    Можно ли и нужно ли уничтожать ставшие, увы, традиционными (хотя, как видим, и не столь древние!) границы между гуманитарными, естественными и математическими науками — об этом я не берусь судить. Но вот разрушить барьеры между представителями этих наук, между лириками и физиками, между гуманитариями и математиками — это представляется и привлекательным, и осуществимым. Особенно благородная цель — уничтожить этот барьер внутри отдельно взятой личности, т. е. превратить гуманитария отчасти в математика, а математика — отчасти в гуманитария. Обсуждая эту цель, полезно вспомнить некоторые факты из истории российской науки. Эти факты связаны в обратном хронологическом порядке с именами Колмогорова, Барсова и Ададурова (в другом написании — Адодурова).

    «И я решил уйти в науку, в которой для окончательного вывода достаточно одного доказательства».

    Первая научная работа великого математика Андрея Николаевича Колмогорова [12 (25) апреля 1903, Тамбов — 20 октября 1987, Москва] была посвящена отнюдь не математике, а истории. В начале 1920-х гг., будучи семнадцатилетним студентом математического отделения Московского университета, он доложил свою работу на семинаре известного московского историка Сергея Владимировича Бахрушина. Она была опубликована посмертно и чрезвычайно высоко оценена специалистами — в частности, руководителем Новгородской археологической экспедиции Валентином Лаврентьевичем Яниным. Выступая на вечере памяти Колмогорова, состоявшемся в Московском доме учёных 15 декабря 1989 г., он так охарактеризовал историческое исследование Колмогорова: «Эта юношеская работа в русле исторической науки занимает место, до которого её [исторической науки. — В. У.] развитие ещё не докатилось. Будучи опубликованной, она окажется впереди всей исторической науки».

    А в предисловии к вышеназванному посмертному изданию исторических рукописей Колмогорова В. Л. Янин писал: «Некоторые наблюдения А. Н. Колмогорова способны пролить свет на источники, обнаруженные много десятилетий спустя после того, как он вёл своё юношеское исследование». И там же: Андрей Николаевич сам неоднократно рассказывал своим ученикам о конце своей «карьеры историка». Когда работа была доложена им в семинаре, руководитель семинара профессор С.В. Бахрушин, одобрив результаты, заметил, однако, что выводы молодого исследователя не могут претендовать на окончательность, так как «в исторической науке каждый вывод должен быть снабжён несколькими доказательствами» (!). Впоследствии, рассказывая об этом, Андрей Николаевич добавлял: «И я решил уйти в науку, в которой для окончательного вывода достаточно одного доказательства». История потеряла гениального исследователя, математика приобрела его.

    Двадцать шестого апреля (по старому стилю, а по новому — 7 мая) 1755 г. состоялось торжественное открытие Московского университета. После молебна были сказаны четыре речи. Первая из них — и притом единственная прозвучавшая на русском языке — называлась «О пользе учреждения Московского университета». Произнёс её Антон Алексеевич Барсов [1 (12) марта 1730, Москва — 21 декабря 1791 (1 января 1792), там же]. Неудивительно, что в 1761 г. он был назначен профессором (в современных терминах — заведующим) на кафедру красноречия; вступление в эту должность ознаменовалось его публичной лекцией «О употреблении красноречия в Российской империи», произнесённой 31 января (11 февраля) 1761 г. Чем же занимался Барсов до того? Преподавал математику — именно с Барсова, в феврале 1755 г. специально для этой цели переведённого из Петербурга в Москву, и началось преподавание математики в Московском университете! Впоследствии Барсов прославился трудами по русской грамматике; ему же принадлежит и ряд предложений по русской орфографии, тогда отвергнутых и принятых лишь в XX в. К сожалению, портрет А. А. Барсова не сохранился.

    Этот этап сравним с осознанием того, что кажущаяся пустота вокруг нас заполнена воздухом.

    Ещё раньше, в 1727 г., знаменитый математик Даниил Бернулли, работавший в то время в Петербургской академии наук, обратил внимание на студента этой академии Василия Евдокимовича Ададурова [15 (26) марта 1709, Новгород — 5 (16) ноября 1780, Москва]. В письме к известному математику Христиану Гольдбаху от 28 мая 1728 г. Бернулли отмечает значительные математические способности молодого человека и сообщает о сделанном Ададуровым открытии: сумма кубов последовательных натуральных чисел равна квадрату суммы их первых степеней: 13 + 23 +... + п3 = = (1 + 2 +... + п)2. Математические заслуги Ададурова засвидетельствованы включением статьи о нём (с портретом, выполненным в технике силуэта) в биографический раздел однотомного «Математического энциклопедического словаря» (М., 1988). А из статьи «Ададуров» в первом томе «Нового энциклопедического словаря» Брокгауза и Ефрона мы узнаём, что Ададуровым написано несколько сочинений по русскому языку и, более того, что «в 1744 г. ему было поручено преподавать русский язык принцессе Софии, т. е. будущей императрице Екатерине II». Последующие изыскания (они были проведены братом автора этих строк Борисом Андреевичем Успенским) показали, что Ададуров является автором первой русской грамматики на русском же языке, составление каковой следует рассматривать как большое событие. Ведь важнейший этап в языковом сознании носителей какого бы то ни было языка — появление первой грамматики этого языка на том же самом языке; этот этап сравним с осознанием того, что кажущаяся пустота вокруг нас заполнена воздухом. Прибавим ещё, что с 1762 по 1778 г. Ададуров был куратором Московского университета — вторым после основавшего университет И. И. Шувалова.

    Итак, даже если согласиться с традиционной классификацией наук, отсюда ещё не следует с неизбежностью аналогичная классификация учёных или учащихся. Приведённые факты показывают, что математик и гуманитарий способны уживаться в одном лице. Здесь предвидятся два возражения. Прежде всего нам справедливо укажут, что Ададуров, Барсов, Колмогоров были выдающимися личностями, в то время как любые рекомендации должны быть рассчитаны на массовую аудиторию. На это мы ответим, что образцом для подражания — даже массового подражания — как раз и должны быть выдающиеся личности и что примеры Ададурова, Барсова, Колмогорова призваны вдохновлять. Далее нам укажут, опять-таки справедливо, что отнюдь не всем гуманитариям и отнюдь не всем математикам суждено заниматься научной работой, это и невозможно, и не должно. Ну что ж, ответим мы, примеры из жизни больших учёных выбраны просто потому, что история нам их сохранила; сочетать же математический и гуманитарный подход к окружающему миру стоит даже тем гуманитариям и математикам, которые не собираются посвятить себя высокой науке, и это вполне посильная для них задача. 

    naukatv.ru