Газообразные вещества: примеры и свойства. Газообразное вещество


Газообразные вещества: примеры и свойства

На сегодняшний день известно о существовании более чем 3 миллионов различных веществ. И цифра эта с каждым годом растет, так как химиками-синтетиками и другими учеными постоянно производятся опыты по получению новых соединений, обладающих какими-либо полезными свойствами.

Часть веществ - это природные обитатели, формирующиеся естественным путем. Другая половина - искусственные и синтетические. Однако и в первом и во втором случае значительную часть составляют газообразные вещества, примеры и характеристики которых мы и рассмотрим в данной статье.

газообразные вещества примеры

Агрегатные состояния веществ

С XVII века принято было считать, что все известные соединения способны существовать в трех агрегатных состояниях: твердые, жидкие, газообразные вещества. Однако тщательные исследования последних десятилетий в области астрономии, физики, химии, космической биологии и прочих наук доказали, что есть еще одна форма. Это плазма.

Что она собой представляет? Это частично или полностью ионизированные газы. И оказывается, таких веществ во Вселенной подавляющее большинство. Так, именно в состоянии плазмы находятся:

  • межзвездное вещество;
  • космическая материя;
  • высшие слои атмосферы;
  • туманности;
  • состав многих планет;
  • звезды.

Поэтому сегодня говорят, что существуют твердые, жидкие, газообразные вещества и плазма. Кстати, каждый газ можно искусственно перевести в такое состояние, если подвергнуть его ионизации, то есть заставить превратиться в ионы.

Газообразные вещества: примеры

Примеров рассматриваемых веществ можно привести массу. Ведь газы известны еще с XVII века, когда ван Гельмонт, естествоиспытатель, впервые получил углекислый газ и стал исследовать его свойства. Кстати, название этой группе соединений также дал он, так как, по его мнению, газы - это нечто неупорядоченное, хаотичное, связанное с духами и чем-то невидимым, но ощутимым. Такое имя прижилось и в России.

Можно классифицировать все газообразные вещества, примеры тогда привести будет легче. Ведь охватить все многообразие сложно.

По составу различают:

  • простые,
  • сложные молекулы.

К первой группе относятся те, что состоят из одинаковых атомов в любом их количестве. Пример: кислород - О2, озон - О3, водород - Н2, хлор - CL2, фтор - F2, азот - N2 и прочие.

Ко второй категории следует относить такие соединения, в состав которых входит несколько атомов. Это и будут газообразные сложные вещества. Примерами служат:

  • сероводород - h3S;
  • хлороводород - HCL;
  • метан - Ch5;
  • сернистый газ - SO2;
  • бурый газ - NO2;
  • фреон - CF2CL2;
  • аммиак - Nh4 и прочие.

твердые жидкие газообразные вещества

Классификация по природе веществ

Также можно классифицировать виды газообразных веществ по принадлежности к органическому и неорганическому миру. То есть по природе входящих в состав атомов. Органическими газами являются:

  • первые пять представителей предельных углеводородов (метан, этан, пропан, бутан, пентан). Общая формула Cnh3n+2;
  • этилен - С2Н4;
  • ацетилен или этин - С2Н2;
  • метиламин - Ch4Nh3 и другие.

К категории газов неорганической природы относятся хлор, фтор, аммиак, угарный газ, силан, веселящий газ, инертные или благородные газы и прочие.

Еще одной классификацией, которой можно подвергнуть рассматриваемые соединения, является деление на основе входящих в состав частиц. Именно из атомов состоят не все газообразные вещества. Примеры структур, в которых присутствуют ионы, молекулы, фотоны, электроны, броуновские частицы, плазма, также относятся к соединениям в таком агрегатном состоянии.

Свойства газов

Характеристики веществ в рассматриваемом состоянии отличаются от таковых для твердых или жидких соединений. Все дело в том, что свойства газообразных веществ особенные. Частицы их легко и быстро подвижны, вещество в целом изотропное, то есть свойства не определяются направлением движения входящих в состав структур.

Можно обозначить самые главные физические свойства газообразных веществ, которые и будут отличать их от всех остальных форм существования материи.

  1. Это такие соединения, которые нельзя увидеть и проконтролировать, ощутить обычными человеческими способами. Чтобы понять свойства и идентифицировать тот или иной газ, опираются на четыре описывающих их все параметра: давление, температура, количество вещества (моль), объем.
  2. В отличие от жидкостей газы способны занимать все пространство без остатка, ограничиваясь лишь величиной сосуда или помещения.
  3. Все газы между собой легко смешиваются, при этом у этих соединений нет поверхности раздела.
  4. Существуют более легкие и тяжелые представители, поэтому под действием силы тяжести и времени, возможно увидеть их разделение.
  5. Диффузия - одно из важнейших свойств этих соединений. Способность проникать в другие вещества и насыщать их изнутри, совершая при этом совершенно неупорядоченные движения внутри своей структуры.
  6. Реальные газы электрический ток проводить не могут, однако если говорить о разреженных и ионизированный субстанциях, то проводимость резко возрастает.
  7. Теплоемкость и теплопроводность газов невысока и колеблется у разных видов.
  8. Вязкость возрастает с увеличением давления и температуры.
  9. Существует два варианта межфазового перехода: испарение - жидкость превращается в пар, сублимация - твердое вещество, минуя жидкое, становится газообразным.

Отличительная особенность паров от истинных газов в том, что первые при определенных условиях способны перейти в жидкость или твердую фазу, а вторые нет. Также следует заметить способность рассматриваемых соединений сопротивляться деформациям и быть текучими.

свойства газообразных веществ

Подобные свойства газообразных веществ позволяют широко применять их в самых различных областях науки и техники, промышленности и народном хозяйстве. К тому же конкретные характеристики являются для каждого представителя строго индивидуальными. Мы же рассмотрели лишь общие для всех реальных структур особенности.

Сжимаемость

При разных температурах, а также под влиянием давления газы способны сжиматься, увеличивая свою концентрацию и снижая занимаемый объем. При повышенных температурах они расширяются, при низких - сжимаются.

Под действием давления также происходят изменения. Плотность газообразных веществ увеличивается и, при достижении критической точки, которая для каждого представителя своя, может наступить переход в другое агрегатное состояние.

виды газообразных веществ

Основные ученые, внесшие вклад в развитие учения о газах

Таких людей можно назвать множество, ведь изучение газов - процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.

  1. Амедео Авогадро в 1811 году сделал открытие. Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*1023 молекул для 1 моль любого газа.
  2. Ферми - создал учение об идеальном квантовом газе.
  3. Гей-Люссак, Бойль-Мариотт - фамилии ученых, создавших основные кинетические уравнения для расчетов.
  4. Роберт Бойль.
  5. Джон Дальтон.
  6. Жак Шарль и многие другие ученые.

Строение газообразных веществ

Самая главная особенность в построении кристаллической решетки рассматриваемых веществ, это то, что в узлах ее либо атомы, либо молекулы, которые соединяются друг с другом слабыми ковалентными связями. Также присутствуют силы ван-дер-ваальсового взаимодействия, когда речь идет о ионах, электронах и других квантовых системах.

Поэтому основные типы строения решеток для газов, это:

  • атомная;
  • молекулярная.

Связи внутри легко рвутся, поэтому эти соединения не имеют постоянной формы, а заполняют весь пространственный объем. Это же объясняет отсутствие электропроводности и плохую теплопроводность. А вот теплоизоляция у газов хорошая, ведь, благодаря диффузии, они способны проникать в твердые тела и занимать свободные кластерные пространства внутри них. Воздух при этом не пропускается, тепло удерживается. На этом основано применение газов и твердых тел в совокупности в строительных целях.

частицы газообразного вещества

Простые вещества среди газов

Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:

Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон - О3). Тип связи - ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях - темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа - I2.

строение газообразных веществ

К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.

Сложные соединения газообразной природы

Таких газов, конечно, большинство. Различные сочетания атомов в молекулах, объединенные ковалентными связями и ван-дер-ваальсовыми взаимодействиями, позволяют сформироваться сотням различных представителей рассматриваемого агрегатного состояния.

Примерами именно сложных веществ среди газов могут быть все соединения, состоящие из двух и более разных элементов. Сюда можно отнести:

  • пропан;
  • бутан;
  • ацетилен;
  • аммиак;
  • силан;
  • фосфин;
  • метан;
  • сероуглерод;
  • сернистый газ;
  • бурый газ;
  • фреон;
  • этилен и прочие.

Кристаллическая решетка молекулярного типа. Многие из представителей легко растворяются в воде, образуя соответствующие кислоты. Большая часть подобных соединений - важная часть химических синтезов, осуществляемых в промышленности.

Метан и его гомологи

Иногда общим понятием "газ" обозначают природное полезное ископаемое, которое представляет собой целую смесь газообразных продуктов преимущественно органической природы. Именно он содержит такие вещества, как:

  • метан;
  • этан;
  • пропан;
  • бутан;
  • этилен;
  • ацетилен;
  • пентан и некоторые другие.

В промышленности они являются очень важными, ведь именно пропан-бутановая смесь - это бытовой газ, на котором люди готовят пищу, который используется в качестве источника энергии и тепла.

физические свойства газообразных веществ

Многие из них используются для синтеза спиртов, альдегидов, кислот и прочих органических веществ. Ежегодное потребление природного газа исчисляется триллионами кубометров, и это вполне оправданно.

Кислород и углекислый газ

Какие вещества газообразные можно назвать самыми широко распространенными и известными даже первоклассникам? Ответ очевиден - кислород и углекислый газ. Ведь это они являются непосредственными участниками газообмена, происходящего у всех живых существ на планете.

Известно, что именно благодаря кислороду возможна жизнь, так как без него способны существовать только некоторые виды анаэробных бактерий. А углекислый газ - необходимый продукт "питания" для всех растений, которые поглощают его с целью осуществления процесса фотосинтеза.

С химической точки зрения и кислород, и углекислый газ - важные вещества для проведения синтезов соединений. Первый является сильным окислителем, второй чаще восстановитель.

Галогены

Это такая группа соединений, в которых атомы - это частицы газообразного вещества, соединенные попарно между собой за счет ковалентной неполярной связи. Однако не все галогены - газы. Бром - это жидкость при обычных условиях, а йод - легко возгоняющееся твердое вещество. Фтор и хлор - ядовитые опасные для здоровья живых существ вещества, которые являются сильнейшими окислителями и используются в синтезах очень широко.

fb.ru

Газообразные вещества Газообразное вещество Газообразные вещества

Газообразные вещества

Газообразное вещество Газообразные вещества – это вещество, в котором частицы движутся свободно, хаотично.

Газ (газообразное состояние) • Газ – это агрегатное состояние вещества, характеризующееся очень слабыми связями между составляющими его частицами (молекулами, атомами или ионами), а также их большой подвижностью.

Особенности газов • Легко сжимаются. • Не имеют собственной формы и объема • Любые газы смешиваются друг с другом в любых соотношениях.

Закон Авогадро В равных объемах различных газов при одинаковых условиях содержится одинаковое число молекул.

Число Авогадро • Значение NA = 6, 022…× 1023 называется числом Авогадро. • Это универсальная постоянная для мельчайших частиц любого вещества.

Следствие из закона Авогадро 1 моль любого газа при н. у. (760 мм рт. ст. и 00 С) занимает объем 22, 4 л. Vm = 22. 4 л/моль – молярный объем газов

Важнейшие природные смеси газов Состав воздуха: • φ(N 2) = 78%; • φ(O 2) = 21%; • φ(CO 2) = 0. 03 Природный газ – это смесь углеводородов.

Получение водорода. В промышленности: • Крекинг и риформинг углеводородов в процессе переработки нефти: C 2 H 6 (t = 10000 С) → 2 C + 3 H 2 • Из природного газа. CH 4 + O 2 + 2 H 2 O → 2 CO 2 +6 H 2 O

Водород H 2 В лаборатории: Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту: Zn + 2 HCl → Zn. Cl 2 + H 2 Взаимодействие кальция с водой: Ca + 2 H 2 O → Ca(OH)2 + H 2 Гидролиз гидридов: Ca. H 2 + 2 H 2 O → Ca(OH)2 +2 H 2 Действие щелочей на цинк или алюминий: Zn + 2 Na. OH + 2 H 2 O Na 2[Zn(OH)4] + H 2

Свойства водорода • Самый лёгкий газ, он легче воздуха в 14, 5 раз. • Водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха. • Молекула водорода двухатомна — Н 2. При нормальных условиях — это газ без цвета, запаха и вкуса.

Кислород В промышленности: • Из воздуха. • Основным промышленным способом получения кислорода, является криогенная ректификация. В лаборатории: • Из перманганата калия (марганцовки): 2 KMn. O 4 = K 2 Mn. O 4 + Mn. O 2 + О 2 ↑; 2 H 2 O 2 = 2 Н 2 О + О 2↑.

Свойства кислорода • При нормальных условиях кислород — это газ без цвета, вкуса и запаха. • 1 л его имеет массу 1, 429 г. Немного тяжелее воздуха. Слабо растворяется в воде и спирте Хорошо растворяется в расплавленном серебре. Является парамагнетиком.

Оксид углерода (IV) В лаборатории: • Из мела, известняка или мрамора: Na 2 CO 3 + 2 HCl = 2 Na. Cl + CO 2↑ +H 2 O Сa. CO 3 + HCl = Ca. Cl 2 + CO 2↑ + H 2 O В природе: • Фотосинтез в растениях: C 6 H 12 O 6 + 6 O 2 = 6 CO 2 + 6 H 2 O

Оксид углерода (IV) • Оксид углерода (IV) (углекислый газ) – это бесцветный газ, без запаха, со слегка кисловатым вкусом. • Тяжелее воздуха, растворим в воде, при сильном охлаждении кристаллизуется в виде белой снегообразной массы – «сухого льда» . • При атмосферном давлении он не плавится, а испаряется, температура сублимации -78 °С.

Аммиак (н. у. ) – это бесцветный газ с резким характерным запахом (запах нашатырного спирта). Аммиак почти вдвое легче воздуха, растворимость NH 3 в воде чрезвычайно велика. В лаборатории аммиак получают: • Взаимодействием щелочей с солями аммония: NH 4 Cl + Na. OH = Na. Cl + H 2 O + NH 3↑ В промышленности: • Взаимодействие водорода и азота: 3 H + N = 2 NH

Этилен В лаборатории: • Дегидратация этилового спирта В промышленности: • Крекинг нефтепродуктов: C 4 H 10 → C 2 H 6 + C 2 H 4 этан этен

• Этилен — бесцветный газ, обладающий слабым сладковатым запахом и относительно высокой плотностью. • Этилен горит светящимся пламенем; с воздухом и кислородом образует взрывоопасную смесь. • В воде этилен практически нерастворим.

Получение, собирание и распознавание газов Название газа (формула) Водород (H 2) Кислород (O 2) Углекислый газ (CO 2) Аммиак (NH 3) Этилен (С 2 H 4) Физические Лабораторный Способ свойства способ собирания получения Способ Значение распознаван газообразног ия о вещества

Задачи Задача № 1. 13, 5 грамм цинка (Zn) взаимодействуют с соляной кислотой (HCl). Объемная доля выхода водорода (H 2) составляет 85 %. Вычислить объем водорода, который выделился? Задача № 2. Имеется газовая смесь, массовые доли газа в которой равны (%): метана – 65, водорода – 35. Определите объемные доли газов в этой смеси.

Задача № 1 1) Запишем уравнение реакции взаимодействия цинка (Zn) с соляной кислотой (HCl): Zn + 2 HCl = Zn. Cl 2 + H 2 2) n (Zn) = 13, 5 / 65 = 0, 2 (моль). 3) 1 моль Zn вытесняет 1 моль водорода (H 2), а 0, 2 моль Zn вытесняет х моль водорода (H 2). Получаем: V теор. (H 2) = 0, 2 ∙ 22, 4 = 4, 48 (л). 4) Вычислим объем водорода практический по формуле: V практ. (H 2) = 85 ⋅ 4, 48 / 100 = 3, 81 (л).

Задача № 2 Имеется газовая смесь, массовые доли газа в которой равны (%): метана – 65, водорода – 35. Определите объемные доли газов в этой смеси.

present5.com

Газообразные вещества: примеры и свойства

Образование 22 апреля 2015

На сегодняшний день известно о существовании более чем 3 миллионов различных веществ. И цифра эта с каждым годом растет, так как химиками-синтетиками и другими учеными постоянно производятся опыты по получению новых соединений, обладающих какими-либо полезными свойствами.

Часть веществ - это природные обитатели, формирующиеся естественным путем. Другая половина - искусственные и синтетические. Однако и в первом и во втором случае значительную часть составляют газообразные вещества, примеры и характеристики которых мы и рассмотрим в данной статье.

газообразные вещества примеры

Агрегатные состояния веществ

С XVII века принято было считать, что все известные соединения способны существовать в трех агрегатных состояниях: твердые, жидкие, газообразные вещества. Однако тщательные исследования последних десятилетий в области астрономии, физики, химии, космической биологии и прочих наук доказали, что есть еще одна форма. Это плазма.

Что она собой представляет? Это частично или полностью ионизированные газы. И оказывается, таких веществ во Вселенной подавляющее большинство. Так, именно в состоянии плазмы находятся:

  • межзвездное вещество;
  • космическая материя;
  • высшие слои атмосферы;
  • туманности;
  • состав многих планет;
  • звезды.

Поэтому сегодня говорят, что существуют твердые, жидкие, газообразные вещества и плазма. Кстати, каждый газ можно искусственно перевести в такое состояние, если подвергнуть его ионизации, то есть заставить превратиться в ионы.

Газообразные вещества: примеры

Примеров рассматриваемых веществ можно привести массу. Ведь газы известны еще с XVII века, когда ван Гельмонт, естествоиспытатель, впервые получил углекислый газ и стал исследовать его свойства. Кстати, название этой группе соединений также дал он, так как, по его мнению, газы - это нечто неупорядоченное, хаотичное, связанное с духами и чем-то невидимым, но ощутимым. Такое имя прижилось и в России.

Можно классифицировать все газообразные вещества, примеры тогда привести будет легче. Ведь охватить все многообразие сложно.

По составу различают:

  • простые,
  • сложные молекулы.

К первой группе относятся те, что состоят из одинаковых атомов в любом их количестве. Пример: кислород - О2, озон - О3, водород - Н2, хлор - CL2, фтор - F2, азот - N2 и прочие.

Ко второй категории следует относить такие соединения, в состав которых входит несколько атомов. Это и будут газообразные сложные вещества. Примерами служат:

  • сероводород - h3S;
  • хлороводород - HCL;
  • метан - Ch5;
  • сернистый газ - SO2;
  • бурый газ - NO2;
  • фреон - CF2CL2;
  • аммиак - Nh4 и прочие.

твердые жидкие газообразные вещества

Видео по теме

Классификация по природе веществ

Также можно классифицировать виды газообразных веществ по принадлежности к органическому и неорганическому миру. То есть по природе входящих в состав атомов. Органическими газами являются:

  • первые пять представителей предельных углеводородов (метан, этан, пропан, бутан, пентан). Общая формула Cnh3n+2;
  • этилен - С2Н4;
  • ацетилен или этин - С2Н2;
  • метиламин - Ch4Nh3 и другие.

К категории газов неорганической природы относятся хлор, фтор, аммиак, угарный газ, силан, веселящий газ, инертные или благородные газы и прочие.

Еще одной классификацией, которой можно подвергнуть рассматриваемые соединения, является деление на основе входящих в состав частиц. Именно из атомов состоят не все газообразные вещества. Примеры структур, в которых присутствуют ионы, молекулы, фотоны, электроны, броуновские частицы, плазма, также относятся к соединениям в таком агрегатном состоянии.

Свойства газов

Характеристики веществ в рассматриваемом состоянии отличаются от таковых для твердых или жидких соединений. Все дело в том, что свойства газообразных веществ особенные. Частицы их легко и быстро подвижны, вещество в целом изотропное, то есть свойства не определяются направлением движения входящих в состав структур.

Можно обозначить самые главные физические свойства газообразных веществ, которые и будут отличать их от всех остальных форм существования материи.

  1. Это такие соединения, которые нельзя увидеть и проконтролировать, ощутить обычными человеческими способами. Чтобы понять свойства и идентифицировать тот или иной газ, опираются на четыре описывающих их все параметра: давление, температура, количество вещества (моль), объем.
  2. В отличие от жидкостей газы способны занимать все пространство без остатка, ограничиваясь лишь величиной сосуда или помещения.
  3. Все газы между собой легко смешиваются, при этом у этих соединений нет поверхности раздела.
  4. Существуют более легкие и тяжелые представители, поэтому под действием силы тяжести и времени, возможно увидеть их разделение.
  5. Диффузия - одно из важнейших свойств этих соединений. Способность проникать в другие вещества и насыщать их изнутри, совершая при этом совершенно неупорядоченные движения внутри своей структуры.
  6. Реальные газы электрический ток проводить не могут, однако если говорить о разреженных и ионизированный субстанциях, то проводимость резко возрастает.
  7. Теплоемкость и теплопроводность газов невысока и колеблется у разных видов.
  8. Вязкость возрастает с увеличением давления и температуры.
  9. Существует два варианта межфазового перехода: испарение - жидкость превращается в пар, сублимация - твердое вещество, минуя жидкое, становится газообразным.

Отличительная особенность паров от истинных газов в том, что первые при определенных условиях способны перейти в жидкость или твердую фазу, а вторые нет. Также следует заметить способность рассматриваемых соединений сопротивляться деформациям и быть текучими.

свойства газообразных веществ

Подобные свойства газообразных веществ позволяют широко применять их в самых различных областях науки и техники, промышленности и народном хозяйстве. К тому же конкретные характеристики являются для каждого представителя строго индивидуальными. Мы же рассмотрели лишь общие для всех реальных структур особенности.

Сжимаемость

При разных температурах, а также под влиянием давления газы способны сжиматься, увеличивая свою концентрацию и снижая занимаемый объем. При повышенных температурах они расширяются, при низких - сжимаются.

Под действием давления также происходят изменения. Плотность газообразных веществ увеличивается и, при достижении критической точки, которая для каждого представителя своя, может наступить переход в другое агрегатное состояние.

виды газообразных веществ

Основные ученые, внесшие вклад в развитие учения о газах

Таких людей можно назвать множество, ведь изучение газов - процесс трудоемкий и исторически долгий. Остановимся на самых известных личностях, сумевших сделать наиболее значимые открытия.

  1. Амедео Авогадро в 1811 году сделал открытие. Неважно, какие газы, главное, что при одинаковых условиях их в одном объеме их содержится равное количество по числу молекул. Существует рассчитанная величина, имеющая название по фамилии ученого. Она равна 6,03*1023 молекул для 1 моль любого газа.
  2. Ферми - создал учение об идеальном квантовом газе.
  3. Гей-Люссак, Бойль-Мариотт - фамилии ученых, создавших основные кинетические уравнения для расчетов.
  4. Роберт Бойль.
  5. Джон Дальтон.
  6. Жак Шарль и многие другие ученые.

Строение газообразных веществ

Самая главная особенность в построении кристаллической решетки рассматриваемых веществ, это то, что в узлах ее либо атомы, либо молекулы, которые соединяются друг с другом слабыми ковалентными связями. Также присутствуют силы ван-дер-ваальсового взаимодействия, когда речь идет о ионах, электронах и других квантовых системах.

Поэтому основные типы строения решеток для газов, это:

  • атомная;
  • молекулярная.

Связи внутри легко рвутся, поэтому эти соединения не имеют постоянной формы, а заполняют весь пространственный объем. Это же объясняет отсутствие электропроводности и плохую теплопроводность. А вот теплоизоляция у газов хорошая, ведь, благодаря диффузии, они способны проникать в твердые тела и занимать свободные кластерные пространства внутри них. Воздух при этом не пропускается, тепло удерживается. На этом основано применение газов и твердых тел в совокупности в строительных целях.

частицы газообразного вещества

Простые вещества среди газов

Какие по строению и структуре газы относятся к данной категории, мы уже оговаривали выше. Это те, что состоят из одинаковых атомов. Примеров можно привести много, ведь значительная часть неметаллов из всей периодической системы при обычных условиях существует именно в таком агрегатном состоянии. Например:

  • фосфор белый - одна из аллотропных модификаций данного элемента;
  • азот;
  • кислород;
  • фтор;
  • хлор;
  • гелий;
  • неон;
  • аргон;
  • криптон;
  • ксенон.

Молекулы этих газов могут быть как одноатомными (благородные газы), так и многоатомными (озон - О3). Тип связи - ковалентная неполярная, в большинстве случаев достаточно слабая, но не у всех. Кристаллическая решетка молекулярного типа, что позволяет этим веществам легко переходить из одного агрегатного состояния в другое. Так, например, йод при обычных условиях - темно-фиолетовые кристаллы с металлическим блеском. Однако при нагревании сублимируются в клубы ярко-фиолетового газа - I2.

строение газообразных веществ

К слову сказать, любое вещество, в том числе металлы, при определенных условиях могут существовать в газообразном состоянии.

Сложные соединения газообразной природы

Таких газов, конечно, большинство. Различные сочетания атомов в молекулах, объединенные ковалентными связями и ван-дер-ваальсовыми взаимодействиями, позволяют сформироваться сотням различных представителей рассматриваемого агрегатного состояния.

Примерами именно сложных веществ среди газов могут быть все соединения, состоящие из двух и более разных элементов. Сюда можно отнести:

  • пропан;
  • бутан;
  • ацетилен;
  • аммиак;
  • силан;
  • фосфин;
  • метан;
  • сероуглерод;
  • сернистый газ;
  • бурый газ;
  • фреон;
  • этилен и прочие.

Кристаллическая решетка молекулярного типа. Многие из представителей легко растворяются в воде, образуя соответствующие кислоты. Большая часть подобных соединений - важная часть химических синтезов, осуществляемых в промышленности.

Метан и его гомологи

Иногда общим понятием "газ" обозначают природное полезное ископаемое, которое представляет собой целую смесь газообразных продуктов преимущественно органической природы. Именно он содержит такие вещества, как:

  • метан;
  • этан;
  • пропан;
  • бутан;
  • этилен;
  • ацетилен;
  • пентан и некоторые другие.

В промышленности они являются очень важными, ведь именно пропан-бутановая смесь - это бытовой газ, на котором люди готовят пищу, который используется в качестве источника энергии и тепла.

физические свойства газообразных веществ

Многие из них используются для синтеза спиртов, альдегидов, кислот и прочих органических веществ. Ежегодное потребление природного газа исчисляется триллионами кубометров, и это вполне оправданно.

Кислород и углекислый газ

Какие вещества газообразные можно назвать самыми широко распространенными и известными даже первоклассникам? Ответ очевиден - кислород и углекислый газ. Ведь это они являются непосредственными участниками газообмена, происходящего у всех живых существ на планете.

Известно, что именно благодаря кислороду возможна жизнь, так как без него способны существовать только некоторые виды анаэробных бактерий. А углекислый газ - необходимый продукт "питания" для всех растений, которые поглощают его с целью осуществления процесса фотосинтеза.

С химической точки зрения и кислород, и углекислый газ - важные вещества для проведения синтезов соединений. Первый является сильным окислителем, второй чаще восстановитель.

Галогены

Это такая группа соединений, в которых атомы - это частицы газообразного вещества, соединенные попарно между собой за счет ковалентной неполярной связи. Однако не все галогены - газы. Бром - это жидкость при обычных условиях, а йод - легко возгоняющееся твердое вещество. Фтор и хлор - ядовитые опасные для здоровья живых существ вещества, которые являются сильнейшими окислителями и используются в синтезах очень широко.

Источник: fb.ru

Комментарии

Идёт загрузка...

Похожие материалы

Неорганические вещества: примеры и свойстваОбразование Неорганические вещества: примеры и свойства

Ежедневно человек взаимодействует с большим количеством предметов. Они изготовлены из разных материалов, имеют свою структуру и состав. Все, что окружает человека можно разделить на органическое и неорганическое. В ст...

Азот - это что за вещество? Типы и свойства азотаОбразование Азот - это что за вещество? Типы и свойства азота

Азот - это всем известный химический элемент, который обозначается буквой N. Этот элемент, пожалуй, основа неорганической химии, его начинают подробно изучать еще в 8 классе. В данной статье мы рассмотрим данный химич...

Жидкие тела: примеры и свойства. Какие бывают жидкие телаОбразование Жидкие тела: примеры и свойства. Какие бывают жидкие тела

Выделяют три агрегатных состояния веществ: жидкость, вода и газ. Все они различаются по своим свойствам. Особое место в этом списке занимают жидкости. В отличие от твердых тел, в жидкостях молекулы не расположены упор...

Физические вещества: примеры и описаниеОбразование Физические вещества: примеры и описание

Есть темы, которые тесно связывают между собой знания из различных научных дисциплин естественного профиля. Одна из них относится к понятию физического вещества. С точки зрения химии, речь идет об основной форме матер...

Химические соединения - это... Характеристика, примеры и свойстваОбразование Химические соединения - это... Характеристика, примеры и свойства

Большинство людей не задумывается о составе окружающих их предметов, веществ, материи. Атомы, молекулы, электроны, протоны - эти понятия кажутся не только непонятными, но и далекими от действительности. Однако такое м...

Уникальное природное вещество – прополис (применение и свойства)Здоровье Уникальное природное вещество – прополис (применение и свойства)

Химический состав этого продукта жизнедеятельности медоносных пчел свидетельствует о том, что прополис, применение которого в лечебных целях началось с незапамятных времен, по своей эффективности зачастую превосходит ...

Жидкий гелий: особенности и свойства веществаОбразование Жидкий гелий: особенности и свойства вещества

Гелий относится к группе благородных газов. Жидкий гелий является самой холодной жидкостью в мире. В этом агрегатном состоянии он обладает рядом уникальных особенностей, таких как сверхтекучесть и сверхпроводимость. П...

Электролиты: примеры. Состав и свойства электролитов. Сильные и слабые электролитыОбразование Электролиты: примеры. Состав и свойства электролитов. Сильные и слабые электролиты

Электролиты как химические вещества известны с древних времён. Однако большинство областей своего применения они завоевали относительно недавно. Мы обсудим самые приоритетные для промышленности области использования э...

Водород - это что за вещество? Химические и физические свойства водородаОбразование Водород - это что за вещество? Химические и физические свойства водорода

Каждый химический элемент в периодической системе имеет свое определенное место положения, которое отражает проявляемые им свойства и говорит о его электронном строении. Однако есть среди всех один особый атом, которы...

Органические вещества: примеры. Примеры образования органических и неорганических веществОбразование Органические вещества: примеры. Примеры образования органических и неорганических веществ

Как известно, все вещества могут быть поделены на две большие категории – минеральные и органические. Можно привести большое количество примеров неорганических, или минеральных, веществ: соль, сода, калий. Но ка...

monateka.com

газообразное вещество — с русского

  • газообразное вещество — газ — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы газ EN gaseous mattergaseous substance …   Справочник технического переводчика

  • газообразное вещество — dujinė medžiaga statusas T sritis ekologija ir aplinkotyra apibrėžtis Tokios agregatinės būsenos medžiaga, kai molekulių sąveikos energija mažesnė už jų kinetinę energiją. atitikmenys: angl. gaseous substance vok. gasförmiger Stoff, m rus.… …   Ekologijos terminų aiškinamasis žodynas

  • Вещество — в химии  физическая субстанция со специфическим химическим составом. В философском словаре Григория Теплова в 1751 году словом вещество переводился латинский термин Substantia. Вещество в современной физике как правило понимается… …   Википедия

  • вещество — а; ср. Качественная сущность материи; то, из чего состоит физическое тело. Твёрдое, жидкое, газообразное, кристаллическое в. Органические вещества. Отравляющие, ядовитые, горючие, взрывчатые вещества. Белое, серое в. ◊ Обмен веществ. Совокупность …   Энциклопедический словарь

  • Вещество как материя — (Matière, Substance, Materie, Stoff, Matter) противополагается по смыслу духу, силе, форме, явлению и пустоте. Такое отрицательное определение, происходящее из древности, не может служить основанием для каких либо научных сведений о В. Наука же… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • вещество — а/; ср. Качественная сущность материи; то, из чего состоит физическое тело. Твёрдое, жидкое, газообразное, кристаллическое вещество/. Органические вещества. Отравляющие, ядовитые, горючие, взрывчатые вещества. Белое, серое вещество/. обмен… …   Словарь многих выражений

  • Фосген: вещество, противоядия от которого не существует — Фосген (дихлорангидрид угольной кислоты) бесцветное газообразное вещество с запахом прелых фруктов или сена. Также для обозначения используют следующие синонимы: карбонилхлорид, хлорокись углерода. Впервые получено в 1812 году английским физиком… …   Энциклопедия ньюсмейкеров

  • Химическое вещество — Вещество форма материи, в отличие от поля, обладающая массой покоя. Вещество состоит из частиц, среди которых чаще всего встречаются электроны, протоны и нейтроны. Последние два образуют атомные ядра, а все вместе атомы, молекулы, кристаллы и т.… …   Википедия

  • Пар (газообразное состояние) — ПАР, вещество в газообразном состоянии в условиях, когда оно находится в одной системе с конденсированной (жидкой, твердой) фазой того же вещества. Фазовый переход 1 го рода, при котором вещество из конденсированного состояния переходит в… …   Иллюстрированный энциклопедический словарь

  • переход в газообразное состояние — ▲ превращение ↑ из, конденсированное состояние, во (что), газ < > конденсация парообразование. | выпаривать, ся. испарение переход в ва из жидкого состояния в газообразное, происходящий на свободной поверхности жидкости. испариться.… …   Идеографический словарь русского языка

  • Литология — Возможно, эта статья содержит оригинальное исследование. Добавьте ссылки на источники, в противном случае она может быть выставлена на удаление. Дополнительные сведения могут быть на странице обсуждения. (25 мая 2011) …   Википедия

  • translate.academic.ru

    Газообразное вещество - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Газообразное вещество

    Cтраница 1

    Газообразные вещества обладают не только смазочно-охлаждающими свойствами, но и способностью химического воздействия. В этом случае охлаждающий эффект повышается за счет низкой температуры подаваемой струи газа, а не за счет теплоты парообразования, которая у газов незначительна. При охлаждении газами необходимо строго соблюдать правила техники безопасности. Пары поверхностно-активных веществ, образовавшиеся в результате испарения жидкостей на нагретых поверхностях зоны резания, окутывают режущую часть инструмента, проникают в зону контакта и с высокой скоростью реагируют с неокисленной поверхностью стружки. Образуется достаточно прочная смазочная пленка. Свободное испарение жидкостей на нагретых поверхностях происходит со значительным поглощением теплоты. КПа и распиливаются на мельчайшие частицы.  [1]

    Газообразное вещество пропускают в жидкость.  [2]

    Газообразное вещество пропускают над твердым веществом, находящимся в трубке для сожжения. Твердое вещество помещают в трубку или в фарфоровую лодочку или насыпают просто в виде слоя, закрытого с обеих сторон стеклянной ватой. В большинстве случаев твердое вещество нагревают.  [3]

    Газообразное вещество, не содержащее кислорода, сожгли в атмосфере кислорода; при этом образовалось 2 2 г двуокиси углерода, 2 25 г воды и 1 26 л двуокиси азота МО2; измерение объема газа проводили при давлении 735 мм рт. ст. и 25 С.  [4]

    Газообразные вещества состоят из свободно движущихся частиц. Это свойство газов, как мы видели выше, вызывает явление диффузии: частицы газов стремятся занять весь объем, предоставленный им, и равномерно распределиться по всему этому объему.  [5]

    Газообразные вещества, находящиеся при давлениях, существенно превосходящих атмосферное, перестают подчиняться формулам идеального газа. Вычисления могут привести к ошибкам в несколько процентов уже при давлениях в несколько десятков атмосфер.  [6]

    Газообразные вещества выбрасываются в атмосферу с отходящими газами или попадают в нее в результате протекающих в природе естественных процессов.  [7]

    Газообразные вещества А и В реагируют с образованием газообразного продукта С: а) выразите К.  [8]

    Газообразное вещество пропускают в жидкость.  [9]

    Газообразное вещество пропускают над твердым веществом, находящимся в трубке для сожжения. Твердое вещество помещают в трубку или в фарфоровую лодочку или насыпают просто в виде слоя, закрытого с обеих сторон стеклянной ватой. В большинстве случаев твердое вещество нагревают.  [10]

    Газообразные вещества ( кроме водорода и окиси углерода), входящие в состав светильного газа, при охлаждении жидким воздухом переходят в твердое состояние.  [11]

    Газообразные вещества, которые подвергаются изучению при помощи анализа, могут быть подразделены прежде всего на природные н промышленные газы. Кроме того, следует отдельно упомянуть газы, получающиеся при различных химических исследованиях, могущие иметь очень сложный состав, газы биологического происхождения, а также газообразные изотопы и газы ядерных процессов, для анализа которых требуются специальные методы.  [12]

    Газообразные вещества, образующиеся в природных условиях, объединяются общим названием природные газы. Сюда относятся: газы земной атмосферы, почвенные, болотные и торфяные газы, образующиеся в поверхностных слоях земли; газы нефтяных, чисто газовых и каменноугольных месторождений; газы, содержащиеся в небольших концентрациях почти в каждой горной каЛэсадочной, так и магматической породе; газы, растворенные в воде морей и океанов, озер, рек и в подземных водах, а также вулканические газы.  [13]

    Газообразные вещества характеризуются весьма малыми плотностями вследствие больших расстояний между молекулами. Поэтому поляризация газов незначительная и диэлектрическая проницаемость газов & близка к единице.  [14]

    Газообразные вещества и низкокипящие жидкости удаляются из электролитической ванны вместе с водородом и парами фтористого водорода. Значительная часть этих паров конденсируется в обратном холодильнике и возвращается в электролитическую ванну, но все же газообразные продукты электролиза содержат некоторое количество фтористого водорода.  [15]

    Страницы:      1    2    3    4

    www.ngpedia.ru

    Газообразное состояние - вещество - Большая Энциклопедия Нефти и Газа, статья, страница 1

    Газообразное состояние - вещество

    Cтраница 1

    Газообразное состояние вещества характеризуется главным образом весьма малыми молекулярными силами сцепления, вследствие чего газ стремится занять максимальный объем.  [1]

    Газообразное состояние вещества наиболее доступно для понимания; жидкое состояние уже значительно менее понятно, а твердое вещество может, по-видимому, считаться наиболее сложным. Порошки часто называют четвертым состоянием вещества. Кроме того, явления на границах раздела твердое тело - твердое тело и твердое тело - газ [1-3] относятся к наименее изученным аспектам твердого состояния.  [2]

    Газообразное состояние вещества в основном характеризуется весьма малыми межмолекулярными силами сцепления.  [3]

    Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества - атомы или молекулы - большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают заметное действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы на общее поведение газа при тех или иных изменениях его состояния.  [4]

    Газообразное состояние вещества очень распространено. Газы участвуют в важнейших химических реакциях, являются теплоносителями и источниками энергии. Он распространил закон сохранения энергии на тепловые явления, полагая, что частицы газов находятся в непрерывном хаотическом движении, сталкиваются и отталкиваются друг от друга в беспорядочной взаимности. Позже была развита теория газов на основе следующих положений: 1) газ соетоит из огромного числа молекул, находящихся в непрерывном тепловом движении; 2) молекулы подчиняются законам механики, между ними отсутствует взаимодействие; 3) постоянно происходящие между молекулами столкновения подобны столкновениям между абсолютно упругими шарами и происходят без потери скоростей. Молекулы лишь меняют направление движения, а их общая кинетическая энергия остается постоянной.  [5]

    Газообразное состояние вещества характеризуется малым взаимодействием между его частицами и большими расстояниями между ними. Поэтому газы смешиваются в любых отношениях. При очень высоких давлениях, когда плотность газа приближается к плотности жидкости и газ нельзя считать идеальным даже приближенно, может наблюдаться ограниченная растворимость.  [6]

    Газообразное состояние вещества ( газ) - агрегатное состояние вещества, в котором его частицы не связаны или весьма слабо связаны силами взаимодействия и движутся свободно, равномерно заполняя в отсутствие внешних полей весь предоставленный им объем.  [7]

    Газообразное состояние вещества характеризуется беспорядочным тепловым движением молекул. Последние соударяются друг с другом и со стенками сосуда, в котором находится газ. Удары молекул о стенки сосуда создают давление, которое численно равно силе ударов, приходящихся на единицу поверхности стенок.  [8]

    Газообразное состояние вещества является наиболее простым по своим свойствам, особенно при не слишком больших давлениях и не слишком низких температурах. Если, например, при больших давлениях ( больше 100 атм) такие газы, как О2, N2 и Н2, взятые при одинаковых начальных температурах и давлениях, будут иметь заметные оттичия по сжимаемости и тепловому расширению, то при давлениях, близких к одной атмосфере, индивидуальные различия указанных и других газов сглаживаются.  [9]

    Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества - атомы или молекулы - большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают заметное действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы па общее поведение газа при тех или иных изменениях его состояния.  [10]

    Газообразное состояние вещества характеризуется тем, что мельчайшие частицы вещества - - атомы или молекулы - большую часть времени пребывают сравнительно далеко друг от друга. Силы взаимодействия между ними оказывают свое действие только в течение весьма коротких промежутков времени, когда частицы газа сталкиваются между собой. Поэтому действие молекулярных сил выражается только в обмене энергиями при столкновениях. Чем меньше плотность газа, тем больше свободный пробег его молекул и, следовательно, тем меньше влияния оказывают молекулярные силы на общее поведение газа при тех или иных изменениях его состояния.  [11]

    Газообразное состояние вещества характеризуется ничтожно малыми силами, действующими между молекулами этого вещества, причем размеры самих молекул по сравнению со средними расстояниями между ними также малы. Движение молекул газа в межмолекулярных пространствах до их столкновения совершается равномерно, прямолинейно и беспорядочно.  [12]

    Газообразному состоянию вещества соответствует полный молекулярный беспорядок.  [13]

    Газообразному состоянию вещества соответствует полный молекулярный беспорядок. Такому распределению молекул ( или атомов) соответствует очень большое число всевозможных перегруппировок молекул в пространстве. Однако физические свойства вещества при всех этих перегруппировках остаются неизменными. Поэтому им всем соответствует одно газообразное состояние.  [14]

    Различают капельно-жидкое и газообразное состояние вещества.  [15]

    Страницы:      1    2    3    4

    www.ngpedia.ru

    Газ (состояние вещества) — Мегаэнциклопедия Кирилла и Мефодия — статья

    Газ — агрегатное состояние вещества, в котором составляющие его атомы и молекулы почти свободно и хаотически движутся в промежутках между столкновениями, во время которых происходит резкое изменение характера их движения. Французское слово gaz образовано от греческого «хаос». Газообразное состояние вещества является самым распространенным состоянием вещества Вселенной. Солнце, звезды, облака межзвездного вещества, туманности, атмосферы планет состоят из газов, или нейтральных, или ионизованных (плазмы). Газы широко распространены в природе: они образуют атмосферу Земли, в значительных количествах содержатся в твердых земных породах, растворены в воде океанов, морей и рек. Встречающиеся в природных условиях газы представляют собой, как правило, смеси химически индивидуальных газов.

    Газы равномерно заполняют доступное для них пространство, и в отличие от жидкостей и твердых тел, не образуют свободной поверхности. Они оказывают давление на ограничивающую заполняемое ими пространство оболочку. Плотность газов при нормальном давлении на насколько порядков меньше плотности жидкостей. В отличие от твердых тел и жидкостей, объем газов существенно зависит от давления и температуры.

    Наиболее полно изучены были свойства достаточно разряженных газов, в которых расстояния между молекулами при нормальных условиях порядка 10 нм, что значительно больше радиуса действия сил межмолекулярного взаимодействия. Такой газ, молекулы которого рассматриваются как невзаимодействующие материальные точки, называется идеальным газом. Идеальные газы строго подчиняются законам Бойля — Мариотта и Гей-Люссака. Практически все газы ведут себя как идеальные при не слишком высоких давлениях и не слишком низких температурах.

    Молекулярно-кинетическая теория газов рассматривает газы как совокупность слабо взаимодействующих частиц (молекул или атомов), находящихся в непрерывном хаотическом (тепловом) движении. На основе этих простых представлений кинетической теории удается объяснить основные физические свойства газов, особенно полно — свойства разреженных газов. У достаточно разреженных газов средние расстояния между молекулами оказываются значительно больше радиуса действия межмолекулярных сил. Так, например, при нормальных условиях в 1 см3 газа находится ~ 1019 молекул и среднее расстояние между ними составляет ~ 10-6 см. С точки зрения молекулярно-кинетической теории давление газов является результатом многочисленных ударов молекул газа о стенки сосуда, усредненных по времени и по стенкам сосуда. При нормальных условиях и макроскопических размерах сосуда число ударов об 1см2 поверхности составляет примерно 1024 в секунду.

    Внутренняя энергия идеального газа (среднее значение полной энергии всех его частиц) зависит только от его температуры. Внутренняя энергия одноатомного газа, имеющего 3 поступательные степени свободы и состоящего из N атомов, равна:

    При повышении плотности газа его свойства перестают быть идеальными, процессы столкновения начинают играть все большую роль и размерами молекул и их взаимодействия пренебречь уже нельзя. Такой газ называют реальный газ. Поведение реальных газов в зависимости от их температуры, давления, физической природы в большей или меньшей степени отличаются от законов идеальных газов. Одним из основных уравнений, описывающих свойства реального газа, является уравнения Ван-дер-Ваальса, при выводе которого были учтены две поправки: на силы притяжения между молекулами и на их размер.Любое вещество можно перевести в газообразное состояние соответствующим подбором давления и температуры. Поэтому возможную область существования газообразного состояния графически изображают в переменных: давление р — температура Т (на р-Т-диаграмме). Существует критическая температура Тк, ниже которой эта область ограничена кривыми сублимации (возгонки) и парообразования, т. е. при любом давлении ниже критического рк существует температура Т, определяемая кривой сублимации или парообразования, выше которой вещество становится газообразным. При температурах ниже Тк можно сконденсировать газ — перевести его в другое агрегатное состояние (твердое или жидкое). При этом фазовое превращение газа в жидкость или твердое тело происходит скачкообразно: незначительное изменение давления приводит к изменению ряда свойств вещества (например, плотности, энтальпии, теплоемкости и др.). Процессы конденсации газов, особенно сжижение газов, имеют важное техническое значение.

    Область газового состояния вещества очень обширна, и свойства газов при изменении температуры и давления могут меняться в широких пределах. Так, в нормальных условиях (при 0°С и атмосферном давлении) плотность газа примерно в 1000 раз меньше плотности того же вещества в твердом или жидком состоянии. С другой стороны, при высоких давлениях вещество, которое при сверхкритических температурах можно считать газом, обладает огромной плотностью (например, в центре некоторых звезд ~109 г/см3).

    Внутреннее строение молекул газа слабо влияет на давление, температуру, плотность и связь между ними, но существенным образом влияет на его электрические и магнитные свойства. Калорические свойства газов, такие как теплоемкость, энтропия и т. д., также зависят от внутреннего строения молекул.

    Электрические свойства газов определяются возможностью ионизации молекул или атомов, т. е. появлением в газе электрически заряженных частиц (ионов и электронов). При отсутствии заряженных частиц газы являются хорошими диэлектриками. С ростом концентрации зарядов электропроводность газов увеличивается. При температурах выше нескольких тысяч К газ частично ионизуется и превращается в плазму.

    По магнитным свойствам газы делятся на диамагнитные (инертные газы, СО2, Н2О) и парамагнитные (О2). Молекулы диамагнитных газов не имеют постоянного магнитного момента и приобретают его лишь под действием магнитного поля. Те газы, молекулы которых обладают постоянным магнитным моментом, ведут себя как парамагнетики.

    В современной физике газами называют не только одно из агрегатных состояний вещества. К газам с особыми свойствами относят, например, совокупность свободных электронов в металле (электронный газ), фононов в кристалле (фононный газ). Свойства таких газовых частиц описывает квантовая статистика.

    megabook.ru