ЭЛЕКТРОН (частица). Что такое электроны


ЭЛЕКТРОН (частица) - это... Что такое ЭЛЕКТРОН (частица)?

ЭЛЕКТРО́Н (е, е-), частица, принадлежащая к классу лептонов (см. ЛЕПТОНЫ), носитель наименьшей известной массы и наименьшего электрического заряда (см. ЭЛЕКТРИЧЕСКИЙ ЗАРЯД). Открыт в 1897 г. английским ученым Дж. Дж. Томсоном (см. ТОМСОН Джозеф Джон) и является первой элементарной частицей, открытой в физике. (Название электрон от греческого слова elektron — янтарь, предложено в 1891 г. ирландским физиком Дж.Стони для заряда одновалентного иона). Электрический заряд электрона условились считать отрицательным в соответствии с более ранним соглашением называть отрицательным заряд наэлектролизованного янтаря. Электрон — составная часть атома, число электронов в нейтральном атоме равно числу протонов в ядре. Электрический заряд электрона составляет е = (4,8032068 0,0000015).10-10 единиц СГСЕ, или 1,60217733.10-19Кл. Масса электрона, me = 9,11.10-31кг. Спин электрона равен1/2 (в единицах ћ), следовательно, электрон подчиняется статистике Ферми — Дирака (см. ФЕРМИ-ДИРАКА СТАТИСТИКА), описывающей поведение большого количества электронов. Одним из основных положений этой статистики является принцип Паули (см. ПАУЛИ ПРИНЦИП). Спин электрона — квантовая величина, внутреннее неотъемлемое свойство электрона. Магнитный момент электрона mе » -1,00116mо, где mо — магнетон (см. МАГНЕТОН) Бора. Первые точные измерения электрического заряда электрона провел в 1909—13 гг. американский физик Р. Милликен (см. МИЛЛИКЕН Роберт Эндрус). Античастица электрона — позитрон — открыта в 1932 г. Электроны, как и другие микрочастицы, обладают не только корпускулярными, но и волновыми свойствами. Они сочетают свойства локализованной в пространстве частицы со свойствами не локализованной в определенном месте волны. Волновые свойства электронов проявляются при их дифракции (см. ДИФРАКЦИЯ ВОЛН), которая лежит в основе электронографии. Особенностями движения электронов в атомах, подчиняющегося уравнениям квантовой механики, определяются оптические, электрические, магнитные, механические и химические свойства веществ. Электроны могут рождаться в различных реакциях, таких, как распад отрицательно заряженного мюона, или при бета-распаде нейтрона. Электроны участвуют в электромагнитном, слабом и гравитационном взаимодействиях. В классической электродинамике электрон ведет себя как частица, движение которой подчиняется уравнениям Лоренца —Максвелла (см. ЛОРЕНЦА — МАКСВЕЛЛА УРАВНЕНИЯ). В то же время движение электрона подчиняется уравнению Шредингера (см. ШРЕДИНГЕРА УРАВНЕНИЕ) для нерелятивистких явлений и уравнению Дирака (см. ДИРАКА УРАВНЕНИЕ) — для релятивистских. Слабые взаимодействия электронов проявляются, например, в реакциях между электронами и нейтрино, в атомных спектрах. Так, вследствие электромагнитного процесса происходит аннигиляция электрона и позитрона с образованием двух g-квантов: е+ + е- ® g + g. Электроны и позитроны высоких энергий могут участвовать и в других процессах электромагнитной аннигиляции с образованием адронов: е+ + е-- ® адроны. Такие реакции изучаются на ускорителях на встречных е+е—пучках. Не имеется никаких данных о внутренней структуре электрона. Современные теории исходят из представлений о лептонах как о точечных частицах. Сейчас это проверено экспериментально до расстояний 10-16см. Устойчивость электрона следует из закона сохранения заряда и закона сохранения энергии. Электрон (и позитрон) — самая легкая из заряженных частиц, поэтому он ни на что не может распасться: распад на более тяжелые заряженные частицы (например, мюон, пи-мезон) запрещен законом сохранения энергии, а распад на более легкие, чем электрон, нейтральные частицы (фотоны, нейтрино) запрещен законом сохранения заряда. О точности, с которой выполняется закон сохранения заряда можно судить по тому, что (как показывает опыт) электрон не теряет своего заряда по крайней мере за 10 лет.

dic.academic.ru

ЭЛЕКТРОН - это... Что такое ЭЛЕКТРОН?

(е -) - первая из открытых элементарных частиц, носитель отрицат. элементарного заряда е=1,6.10-19 К (4,8.10-10 единиц СГСЭ). Э.-самая лёгкая из всех заряж. элементарных частиц. Его масса т e9,1•10-28 г в 1836 раз меньше массы протона. Спин Э. равен 1/2 (в единицах 2p/h), и, следовательно, Э. подчиняются Ферми - Дирака статистике. Магнитный момент Э. m е е/(2m е с) = m Б (m Б- магнетон Бора). В пределах точности эксперимента Э.- стабильная частица. Его время жизни t>2•1022 лет.

Э. были открыты в 1897 Дж. Дж. Томсоном (J. J. Thomson), показавшим, что т. н. катодные лучи, возникающие при электрич. разряде в разреженных газах, представляют собой поток отрицательно заряженных частиц. Опытами по отклонению этих частиц в электрич. и магн. полях было установлено, что уд. заряд е/т для них примерно в 1837 раз больше, чем для ионов водорода. За частицами было закреплено назв. "электроны", предложенное ранее в 1891 Дж. Стони (G. Stoney) для обозначения элементарного заряда одновалентных ионов. Значение заряда Э. (близкое к современному) было получено Р. Милликеном (R. Millikan) в серии опытов 1910-14.

Э. играют важнейшую роль в строении окружающего нас вещества, образуя электронные оболочки атомов всех хим. элементов. Типичные размеры электронных оболочек атомов, определяемые квантовой спецификой поведения электронов в поле ядра, задаются в осн. значениями массы и заряда Э. и по порядку величины близки к т. н. боровс-кому радиусу 2/т е е2 =5•10-9 см.

Характер размещения Э. в атомных оболочках и заполнения ими энергетич. уровней в существ. мере связан с наличием у них спина 1/2 и, следовательно, с действием Паули принципа, запрещающего нахождение двух электронов в одинаковом квантовом состоянии. Это ведёт к периодич. повторению свойств хим. элементов, открытому Д. И. Менделеевым (см. Периодическая система элементов). С наличием спина у Э. связаны, в частности, такие нетривиальные свойства ряда твёрдых тел, как ферромагнетизм, обусловливаемый выстраиванием спинов и связанных с ними магн. моментов у электронов соседних атомов, и сверхпроводимость, в основе к-рой лежит возможность образования в металлах при низких темп-pax слабо связанных пар Э. с противоположно ориентированными спинами (куперовские пары, см. Купера эффект).

Как элементарная частица Э. принадлежит к классу леп-тонов, т. е. обладает только эл.-магн. и слабым взаимодействием (и, естественно, гравитационным). Описание электромагнитного взаимодействия Э. даётся квантовой электродинамикой (КЭД). В 1929 в рамках КЭД был произведён первый расчёт сечения электродинамич. процесса комптоновского рассеяния у-квантов на Э. (см. Клейна - Нишины форму ла):g + е -g' + е -', к-рый дал прекрасное согласие с экспериментом. Важным элементом формализма КЭД явилось вторично-квантованное Дирака уравнение для Э. со спином 1/2. Из него следовало существование частицы с массой, равной массе Э., но с противоположным знаком заряда (античастицы Э.). Такая частица е + , названная позитроном, была обнаружена в 1932 в составе космич. лучей, что явилось блестящим подтверждением всей схемы КЭД.

За годы, прошедшие после открытия позитрона, аппарат КЭД был усовершенствован введением техники перенормировки, позволившей учитывать в теории более высокие порядки, и предсказания КЭД подверглись сравнению с экспериментом со всё возрастающей точностью. Во всех случаях расхождений обнаружено не было. В частности, с рекордной точностью были рассчитаны и измерены т. н. лэмбовский сдвиг уровней в атоме водорода и магн. момент Э. С учётом высших поправок теории магн. момент Э. me =1,00116 m Б.

Один из важных выводов, вытекающий из проверок КЭД, связан с размерами Э. КЭД предполагает Э. точечным. Ни в одном эффекте расхождения с этим допущением обнаружено не было. Физически это означает, что размеры Э. меньше 10-16 см. Наилучшая точность проверки была достигнута в чисто электродинамич. процессе е ++е -2g.

Слабое взаимодействие Э. при энергиях, меньших 100 ГэВ в системе центра масс, описывается феноменоло-гич. четырёхфермионной теорией; при энергиях, больших 100 ГэВ в системе центра масс,- теорией электрослабого взаимодействия. Характерные примеры слабого взаимодействия с участием Э.:

При рассмотрении слабого взаимодействия Э. следует приписать дополнительную сохраняющуюся величину - электронное лептонное число. Такое же лептонное число имеет электронное нейтрино v е. В рамках точности совр. эксперимента электронное лептонное число сохраняется. Это означает, что допустим, напр., процесс е -+р n + ve, но невозможен процесс е -+р m-+р или процесс m-е - +g. Природа сохранения электронного лептонного числа пока не понята и явится предметом дальнейших исследований. Наиб. вероятно, что указанный закон сохранения не является строгим, но характер и степень его нарушения предстоит ещё выяснить. Возможно, это прольёт новый свет на свойства Э. А. А. Комар.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

dic.academic.ru

Слово ЭЛЕКТРОН - Что такое ЭЛЕКТРОН?

Слово электрон английскими буквами(транслитом) - elektron

Слово электрон состоит из 8 букв: е к л н о р т э

Значения слова электрон. Что такое электрон?

Электрон

ЭЛЕКТРОН, элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это – самая легкая из электрически заряженных частиц.

Энциклопедия Кругосвет

ЭЛЕКТРОН элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это - самая легкая из электрически заряженных частиц.

Энциклопедия Кольера

Электро́н (от др.-греч. ἤλεκτρον — янтарь) — стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества. Является фермионом (то есть имеет полуцелый спин).

ru.wikipedia.org

"Электрон"

"Электрон", наименование серии советских искусственных спутников Земли (ИСЗ) для исследования радиационного пояса Земли, космических лучей, химического состава околоземного космического пространства…

БСЭ. — 1969—1978

"ЭЛЕКТРОН" - система из двух сов. ИСЗ одноимённого названия, выводимых на существенно различные по высоте орбиты одной РН для одноврем. исследования внеш. и внутр. зон радиац. поясов Земли.

Большой энциклопедический политехнический словарь

"ЭЛЕКТРОН" ИСЗ, созданный в СССР для изучения радиац. поясов и магн. поля Земли. Запускались парами - один по траектории, лежащей ниже, а другой - выше радиац. поясов.

Словарь естествознания

Электрон проводимости

Электрон проводимости, электрон металлов и полупроводников, энергия которого находится в частично заполненной энергетической зоне (зоне проводимости, см. Твёрдое тело).

БСЭ. — 1969—1978

ЭЛЕКТРОНЫ ПРОВОДИМОСТИ - электроны твёрдого тела, упорядоченное движение к-рых (дрейф) обусловливает электропроводность. В твёрдых телах часть электронов (как правило, валентные) отрывается от своих атомов.

Физическая энциклопедия. - 1988

ЭЛЕКТРОНЫ ПРОВОДИМОСТИ электроны металлов и полупроводников, упорядоченное движение к-рых обусловливает электропроводность. В конденсиров. средах часть эл-нов (как правило, валентные) отрывается от своих атомов (делокализируется).

Физическая энциклопедия. - 1988

Электронография молекул

Дифракция электронов — процесс рассеяния электронов на совокупности частиц вещества, при котором электрон проявляет волновые свойства. Данное явление называется корпускулярно-волновым дуализмом, в том смысле...

ru.wikipedia.org

Электронография (от электрон и …графия), метод изучения структуры вещества, основанный на рассеянии ускоренных электронов исследуемым образцом. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул в газах и парах.

БСЭ. — 1969—1978

ЭЛЕКТРОНОГРАФИЯ - метод изучения структуры вещества, основанный на исследовании рассеяния образцом ускоренных электронов. Применяется для изучения атомной структуры кристаллов, аморфных тел и жидкостей, молекул газов и паров.

Физическая энциклопедия. - 1988

Электрон-фононное взаимодействие

ЭЛЕКТРОН-ФОНОННОЕ ВЗАИМОДЕЙСТВИЕ - взаи-модействие между двумя подсистемами квазичастиц в твёрдых телах, а именно, носителями заряда (блоховскими электронами в металлах, полупроводниках и диэлектриках или дырками в этих веществах)…

Физическая энциклопедия. - 1988

Электрон-фононное взаимодействие в физике — взаимодействие электронов с фононами (квантами колебаний кристаллической решётки). Причиной электрон-фононного взаимодействия является изменение электрического поля из-за деформации решётки...

ru.wikipedia.org

ЭЛЕКТРОН-ФОНОННОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие носителей заряда в тв. телах с колебаниями кристаллической решётки — фононами. При распространении колебаний в решётке происходит изменение её периода…

Физическая энциклопедия. - 1988

ФОТОПЕРЕНОС ЭЛЕКТРОНА

ФОТОПЕРЕНОС ЭЛЕКТРОНА, перенос электрона под действием света от молекулы-донора D к молекуле-акцептору А; одна из наиб. распространенных фотохимических реакций.

Химическая энциклопедия

ФОТОПЕРЕНОС ЭЛЕКТРОНА , перенос электрона под действием света от молекулы-донора D к молекуле-акцептору А; одна из наиб. распространенных фотохимических реакций.

Химическая энциклопедия. - 1988

Сольватированный электрон

СОЛЬВАТИРОВАННЫЙ ЭЛЕКТРОН, электрон, захваченный средой в результате поляризации им окружающих молекул (если средой является вода, электрон наз. гидра-тированным).

Химическая энциклопедия

СОЛЬВАТИРОВАННЫЙ ЭЛЕКТРОН — электрон, захваченный средой в результате поляризации им окружающих молекул (если средой является вода, электрон наз. гидра-тированным).

Химическая энциклопедия. - 1988

Сольватированный электрон - электрон, захваченный средой в результате поляризации окружающих его молекул. Сольватированные электроны применяются для синтеза ионов металлов в необычных степенях окисления, получения карбанионов и др.

glossary.ru

Энергия сродства к электрону

СРОДСТВО К ЭЛЕКТРОНУ частицы (молекулы, атома, иона), миним. энергия А, необходимая для удаления электрона из соответствующего отрицат. иона на бесконечность.

Химическая энциклопедия

Сродство к электрону, электронное сродство, способность некоторых нейтральных атомов, молекул и радикалов свободных присоединять добавочные электроны, превращаясь в отрицательные ионы.

БСЭ. — 1969—1978

СРОДСТВО К ЭЛЕКТРОНУ способность нек-рых нейтральных атомов, молекул и свободных радикалов присоединять добавочные эл-ны, превращаясь в отрицат. ионы.

Физическая энциклопедия. - 1988

Лазер на свободных электронах

ЛАЗЕРЫ НА СВОБОДНЫХ ЭЛЕКТРОНАХ генераторы эл.-магн. колебаний, действие к-рых основано на излучении эл-нов, колеблющихся под действием внеш. электрич. и (или) магн. поля и перемещающихся с релятивистской поступат.

Физическая энциклопедия. - 1988

ЛАЗЕРЫ НА СВОБОДНЫХ ЭЛЕКТРОНАХ (ЛСЭ) - генераторы эл.-магн. колебаний, в к-рых активной средой является поток электронов, колеблющихся под действием внеш. электрич. и (или) магн. поля и перемещающихся с релятивистской постулат.

Физическая энциклопедия. - 1988

Лазер на свободных электронах (англ. Free Electron Laser, FEL) — вид лазера, излучение в котором генерируется моноэнергетическим пучком электронов, распространяющимся в ондуляторе — периодической системе отклоняющих (электрических или магнитных)...

ru.wikipedia.org

Русский язык

Электро́н-электро́нный.

Орфографический словарь. — 2004

Примеры употребления слова электрон

Когда солнечный свет поглощается пигментными молекулами хлоропласта, вырабатывается заряженный электрон, который перемещается от одной молекулы к другой через транспортную цепочку, пока в итоге не происходит превращение двуокиси углерода в углеводы сахара.

Автору, перед тем, как сесть за написание заметки, надо было бы погуглить в Рунете свойства электрона, на худой конец хотя бы зайти в Википедию и вспомнить из раздела школьного курса физики, какими величинами характеризуется электрон в представлениях современной физики.

  1. электронография
  2. электронож
  3. электронщик
  4. электрон
  5. электрон-вольт
  6. электрообмотка
  7. электрообогреватель

wordhelp.ru

электрон - это... Что такое электрон?

  • Электрон (КА) — У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель …   Википедия

  • Электрон — (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок …   Каталог отелей

  • ЭЛЕКТРОН — (символ е , е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… …   Физическая энциклопедия

  • Электрон — (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 …   Каталог отелей

  • Электрон — (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… …   Иллюстрированный энциклопедический словарь

  • ЭЛЕКТРОН — (е е ), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …   Большой Энциклопедический словарь

  • ЭЛЕКТРОН — (обозначение е), устойчивая ЭЛЕМЕНТАРНАЯ ЧАСТИЦА с отрицательным зарядом и массой покоя 9,1310 31 кг (что составляет 1/1836 от массы ПРОТОНА). Электроны были обнаружены в 1879 г. английским физиком Джозефом Томсоном. Они движутся вокруг ЯДРА,… …   Научно-технический энциклопедический словарь

  • электрон — сущ., кол во синонимов: 12 • дельта электрон (1) • лептон (7) • минерал (5627) • …   Словарь синонимов

  • ЭЛЕКТРОН — искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов …   Большой Энциклопедический словарь

  • ЭЛЕКТРОН — ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… …   Толковый словарь Ушакова

  • ЭЛЕКТРОН — ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • dic.academic.ru

    Из чего состоит электрон? Масса и заряд электрона

    Электрон - фундаментальная частица, одна из тех, что являются структурными единицами вещества. По классификации является фермионом (частица с полуцелым спином, названа в честь физика Э. Ферми) и лептоном (частицы с полуцелым спином, не участвующие в сильном взаимодействии, одном из четырех основных в физике). Барионное число электрона равно нулю, как и других лептонов.

    До недавнего времени считалось, что электрон – элементарная, то есть неделимая, не имеющая структуры частица, однако сейчас ученые другого мнения. Из чего состоит электрон по представлению современных физиков?

    из чего состоит электрон

    История названия

    Еще в Древней Греции естествоиспытатели заметили, что янтарь, предварительно натертый шерстью, притягивает к себе мелкие предметы, то есть проявляет электромагнитные свойства. Свое название электрон получил от греческого ἤλεκτρον, что и означает "янтарь". Термин предложил Дж. Стоуни в 1894 году, хотя сама частица была открыта Дж. Томпсоном в 1897 году. Обнаружить ее было сложно, причиной этому служит малая масса, и заряд электрона стал в опыте по нахождению решающим. Первые снимки частицы получил Чарльз Вильсон с помощью специальной камеры, которая применяется даже в современных экспериментах и названа в его честь.

    Интересен факт, что одной из предпосылок к открытию электрона является высказывание Бенджамина Франклина. В 1749 году он разработал гипотезу, согласно которой, электричество – это материальная субстанция. Именно в его работах были впервые применены такие термины, как положительный и отрицательный заряды, конденсатор, разряд, батарея и частица электричества. Удельный заряд электрона принято считать отрицательным, а протона – положительным.

    Открытие электрона

    В 1846 году понятие «атом электричества» стал использовать в своих работах немецкий физик Вильгельм Вебер. Майкл Фарадей открыл термин «ион», который сейчас, пожалуй, знают все еще со школьной скамьи. Вопросом природы электричества занимались многие именитые ученые, такие как немецкий физик и математик Юлиус Плюккер, Жан Перрен, английский физик Уильям Крукс, Эрнст Резерфорд и другие.

    Таким образом, прежде чем Джозеф Томпсон успешно завершил свой знаменитый опыт и доказал существование частицы меньшей, чем атом, в этой сфере трудилось множество ученых, и открытие было бы невозможно, не проделай они этой колоссальной работы.

    фундаментальная частица

    В 1906 году Джозеф Томпсон получил Нобелевскую премию. Опыт заключался в следующем: сквозь параллельные металлические пластины, создававшие электрическое поле, пропускались пучки катодных лучей. Затем они должны были проделать такой же путь, но уже через систему катушек, создававших магнитное поле. Томпсон обнаружил, что при действии электрического поля лучи отклонялись, и то же самое наблюдалось при магнитном воздействии, однако пучки катодных лучей не меняли траектории, если на них действовали оба этих поля в определенных соотношениях, которые зависели от скорости частиц.

    После расчетов Томпсон узнал, что скорость этих частиц существенно ниже скорости света, а это значило, что они обладают массой. С этого момента физики стали считать, что открытые частицы материи входят в состав атома, что впоследствии и подтвердилось опытами Резерфорда. Он назвал ее «планетарная модель атома».

    Парадоксы квантового мира

    Вопрос о том, из чего состоит электрон, достаточно сложен, по крайней мере, на данном этапе развития науки. Прежде чем рассматривать его, нужно обратиться к одному из парадоксов квантовой физики, которые даже сами ученые не могут объяснить. Это знаменитый эксперимент с двумя щелями, объясняющий двойственную природу электрона.

    Его суть в том, что перед «пушкой», стреляющей частицами, установлена рамка с вертикальным прямоугольным отверстием. Позади нее находится стена, на которой и будут наблюдаться следы от попаданий. Итак, для начала нужно разобраться, как ведет себя материя. Проще всего представить, как запускаются машиной теннисные мячики. Часть шариков попадает в отверстие, и следы от попаданий на стене складываются в одну вертикальную полосу. Если на некотором расстоянии добавить еще одно такое же отверстие, следы будут образовывать, соответственно, две полосы.

    Волны же в такой ситуации ведут себя по-другому. Если на стене будут отображаться следы от столкновения с волной, то в случае с одним отверстием полоса тоже будет одна. Однако все меняется в случае с двумя щелями. Волна, проходя через отверстия, делится пополам. Если вершина одной из волн встречается с нижней частью другой, они гасят друг друга, и на стене появится интерференционная картина (несколько вертикальных полос). Места на пересечении волн оставят след, а места, где произошло взаимное гашение, нет.

    барионное число электрона

    Удивительное открытие

    С помощью вышеописанного эксперимента ученые могут наглядно продемонстрировать миру различие между квантовой и классической физикой. Когда они стали обстреливать стену электронами, на ней проявлялся обычный вертикальный след: некоторые частицы, точно так же как теннисные мячики, попадали в щель, а некоторые нет. Но все изменилось, когда возникло второе отверстие. На стене проявилась интерференционная картина! Сначала физики решили, что электроны интерферируют между собой, и решили пускать их по одному. Однако уже спустя пару часов (скорость движущихся электронов все же гораздо ниже скорости света) снова стала проявляться интерференционная картина.

    Неожиданный поворот

    Электрон, вместе с некоторыми другими частицами, такими как фотоны, проявляет корпускулярно-волновой дуализм (также применяется термин "квантово-волновой дуализм"). Подобно коту Шредингера, который одновременно и жив, и мертв, состояние электрона может быть как корпускулярным, так и волновым.

    Однако следующий шаг в этом эксперименте породил еще больше загадок: фундаментальная частица, о которой, казалось, известно все, преподнесла невероятный сюрприз. Физики решили установить у отверстий наблюдательное устройство, чтобы зафиксировать, через какую именно щель проходят частицы, и каким образом они проявляют себя в качестве волны. Но как только было поставлен наблюдательный механизм, на стене появились только две полосы, соответствующие двум отверстиям, и никакой интерференционной картины! Как только «слежку» убирали, частица вновь начинала проявлять волновые свойства, будто знала, что за ней уже никто не наблюдает.

    Еще одна теория

    Физик Борн предположил, что частица не превращается в волну в прямом смысле слова. Электрон «содержит» в себе волну вероятности, именно она дает интерференционную картину. Эти частицы обладают свойством суперпозиции, то есть могут находиться в любом месте с определенной долей вероятности, поэтому их и может сопровождать подобная «волна».

    Тем не менее результат налицо: сам факт наличия наблюдателя влияет на результат эксперимента. Кажется невероятным, но это не единственный пример подобного рода. Физики проводили опыты и на более крупных частях материи, однажды объектом стал тончайший отрез алюминиевой фольги. Ученые отметили, что один только факт некоторых измерений влиял на температуру предмета. Природу подобных явлений они объяснить пока еще не в силах.

    удельный заряд электрона

    Структура

    Но из чего состоит электрон? На данный момент современная наука не может дать ответ на этот вопрос. До недавнего времени он считался неделимой фундаментальной частицей, сейчас же ученые склоняются к тому, что он состоит из еще более мелких структур.

    Удельный заряд электрона также считался элементарным, но теперь открыты кварки, имеющие дробный заряд. Существует несколько теорий относительно того, из чего состоит электрон.

    Сегодня можно увидеть статьи, в которых заявляется, что ученым удалось разделить электрон. Однако это верно лишь отчасти.

    Новые эксперименты

    Советские ученые еще в восьмидесятых годах прошлого века предположили, что электрон возможно будет разделить на три квазичастицы. В 1996 году удалось разделить его на спинон и холон, а недавно физиком Ван ден Бринком и его командой частица была разделена на спинон и орбитон. Однако расщепления удается добиться только в специальных условиях. Эксперимент может проводиться в условиях крайне низких температур.

    Когда электроны «остывают» до абсолютного нуля, а это около -275 градусов по Цельсию, они практически останавливаются и образуют между собой нечто вроде материи, будто сливаясь в одну частицу. В таких условиях физикам и удается наблюдать квазичастицы, из которых «состоит» электрон.

    спин электрона

    Переносчики информации

    Радиус электрона очень мал, он равен 2,81794.10-13см, однако выходит, что его составляющие имеют намного меньший размер. Каждая из трех частей, на которые удалось «разделить» электрон, несет в себе информацию о нем. Орбитон, как следует из названия, содержит данные об орбитальной волне частицы. Спинон отвечает за спин электрона, а холон сообщает нам о заряде. Таким образом, физики могут наблюдать отдельно различные состояния электронов в сильно охлажденном веществе. Им удалось проследить пары «холон-спинон» и «спинон-орбитон», но не всю тройку вместе.

    Новые технологии

    Физикам, открывшим электрон, пришлось ждать несколько десятков лет до тех пор, пока их открытие было применено на практике. В наше время технологии находят использование уже через несколько лет, достаточно вспомнить графен – удивительный материал, состоящий из атомов углерода в один слой. Чем будет полезно расщепление электрона? Ученые предрекают создание квантового компьютера, скорость которого, по их мнению, в несколько десятков раз больше, чем у самых мощных современных ЭВМ.

    В чем тайна квантовой компьютерной технологии? Это можно назвать простой оптимизацией. В привычном компьютере минимальная, неделимая часть информации – это бит. И если мы считаем данные чем-то визуальным, то для машины варианта только два. Бит может содержать либо ноль, либо единицу, то есть части двоичного кода.

    Новый метод

    Теперь давайте представим, что в бите содержится и ноль, и единица – это «квантовый бит», или «кьюбит». Роль простых переменных будет играть спин электрона (он может вращаться либо по часовой стрелке, либо против). В отличие от простого бита, кьюбит может выполнять одновременно несколько функций, за счет этого и будет происходить увеличение скорости работы, малая масса и заряд электрона здесь не имеют значения.

    Объяснить это можно на примере с лабиринтом. Чтобы выбраться из него, нужно перепробовать множество различных вариантов, из которых правильным будет только один. Традиционный компьютер пусть и решает задачи быстро, но все же в один момент времени может работать только над одной-единственной проблемой. Он переберет по одному все варианты путей, и в итоге обнаружит выход. Квантовый же компьютер, благодаря двойственности кьюбита, может решать множество задач одновременно. Он пересмотрит все возможные варианты не по очереди, а в единый момент времени, и тоже решит задачу. Трудность пока состоит только в том, чтобы заставить множество квантов работать над одной задачей – это и будет основой компьютера нового поколения.

    электрон содержит

    Применение

    Большинство людей пользуется компьютером на бытовом уровне. С этим пока отлично справляются и обычные ПК, однако чтобы прогнозировать события, зависящие от тысяч, а может и сотен тысяч переменных, машина должна быть просто огромна. Квантовый компьютер же легко справится с такими вещами, как прогнозирование погоды на месяц, обработка данных по стихийным бедствиям и их предсказание, а также будет совершать сложнейшие математические вычисления со многими переменными за долю секунды, и все это с процессором величиной в несколько атомов. Так что возможно, уже очень скоро наши самые мощные компьютеры будут толщиной с лист бумаги.

    масса и заряд электрона

    Сохранение здоровья

    Квантовые компьютерные технологии внесут огромный вклад в медицину. Человечество получит возможность создавать наномеханизмы с мощнейшим потенциалом, с их помощью можно будет не только диагностировать болезни, просто посмотрев на весь организм изнутри, но и оказывать медицинскую помощь без хирургического вмешательства: мельчайшие роботы с «мозгами» отличного компьютера смогут выполнять все операции.

    Неизбежна революция и в сфере компьютерных игр. Мощные машины, способные мгновенно решать задачи, смогут воспроизводить игры с невероятно реалистичной графикой, не за горами уже и компьютерные миры с полным погружением.

    fb.ru

    ЭЛЕКТРОН | Энциклопедия Кругосвет

    Содержание статьи

    ЭЛЕКТРОН, элементарная частица с отрицательным электрическим зарядом, входящая в состав всех атомов, а следовательно, и любого обычного вещества. Это – самая легкая из электрически заряженных частиц. Электроны участвуют почти во всех электрических явлениях. В металле часть электронов не связана с атомами и может свободно перемещаться, благодаря чему металлы хорошо проводят электричество. В плазме, т.е. ионизованном газе, положительно заряженные атомы также перемещаются свободно, но, имея гораздо большую массу, движутся значительно медленнее электронов, а потому вносят меньший вклад в электрический ток. Благодаря малой массе электрон оказался частицей, наиболее вовлеченной в развитие квантовой механики, частной теории относительности и их объединение – релятивистскую квантовую теорию поля. Считается, что в настоящее время полностью известны уравнения, описывающие поведение электронов во всех реально осуществимых физических условиях. (Правда, решение этих уравнений для систем, содержащих большое число электронов, таких, как твердое тело и конденсированная среда, все еще сопряжено с трудностями.)

    Все электроны тождественны и подчиняются статистике Ферми – Дирака. Это обстоятельство выражается в принципе Паули, согласно которому два электрона не могут находиться в одном и том же квантовом состоянии. Одно из следствий принципа Паули заключается в том, что состояния наиболее слабо связанных электронов – валентных электронов, определяющих химические свойства атомов, – зависят от атомного номера (зарядового числа), который равен числу электронов в атоме. Атомный номер равен также заряду ядра, выраженному в единицах заряда протона е. Другое следствие состоит в том, что электронные «облака», окутывающие ядра атомов, сопротивляются их перекрытию, вследствие чего обычное вещество обладает свойством занимать определенное пространство. Как и полагается элементарной частице, число основных характеристик электрона невелико, а именно масса (me » 0,51 МэВ » 0,91Ч10–27 г), заряд (-e » -1,6Ч10–19 Кл) и спин (1/2ћ »1/2Ч0,66Ч10–33 ДжЧс, где – постоянная Планка h, деленная на 2p). Через них выражаются все остальные характеристики электрона, например магнитный момент (»1,001m3 » 1,001Ч0,93Ч10–23 Дж/Тл), за исключением еще двух констант, характеризующих слабое взаимодействие электронов (см. ниже).

    Первые указания на то, что электричество не является непрерывным потоком, а переносится дискретными порциями, были получены в опытах по электролизу. Результатом явился один из законов Фарадея (1833): заряд каждого иона равен целому кратному заряда электрона, называемого ныне элементарным зарядом е. Наименование «электрон» вначале относилось к этому элементарному заряду. Электрон же в современном смысле слова был открыт Дж.Томсоном в 1897. Тогда было уже известно, что при электрическом разряде в разреженном газе возникают «катодные лучи», несущие отрицательный электрический заряд и идущие от катода (отрицательно заряженного электрода) к аноду (положительно заряженному электроду). Исследуя влияние электрического и магнитного полей на пучок катодных лучей, Томсон пришел к выводу: если предположить, что пучок состоит из частиц, заряд которых не превышает элементарного заряда ионов е, то масса таких частиц будет в тысячи раз меньше массы атома. (Действительно, масса электрона составляет примерно 1/1837 массы легчайшего атома, водорода.) Незадолго до этого Х.Лоренц и П.Зееман уже получили доказательства того, что электроны входят в состав атомов: исследования воздействия магнитного поля на атомные спектры (эффект Зеемана) показали, что у заряженных частиц в атоме, благодаря наличию которых свет взаимодействует с атомом, отношение заряда к массе такое же, как и установленное Томсоном для частиц катодных лучей.

    Первая попытка описать поведение электрона в атоме связана с моделью атома Бора (1913). Представление о волновой природе электрона, выдвинутое Л.де Бройлем (1924) (и подтвержденное экспериментально К.Дэвиссоном и Л.Джермером в 1927), послужило основой волновой механики, разработанной Э.Шрёдингером в 1926. Одновременно на основании анализа атомных спектров С.Гаудсмитом и Дж.Уленбеком (1925) был сделан вывод о наличии у электрона спина. Строгое волновое уравнение для электрона было получено П.Дираком (1928). Уравнение Дирака согласуется с частной теорией относительности и адекватно описывает спин и магнитный момент электрона (без учета радиационных поправок).

    Из уравнения Дирака вытекало существование еще одной частицы – положительного электрона, или позитрона, с такими же значениями массы и спина, как у электрона, но с противоположным знаком электрического заряда и магнитного момента. Формально уравнение Дирака допускает существование электрона с полной энергией либо і mс2 (mс2 – энергия покоя электрона), либо Ј – mс2; отсутствие радиационных переходов электронов в состояния с отрицательными энергиями можно было объяснить, предположив, что эти состояния уже заняты электронами, так что, согласно принципу Паули, для дополнительных электронов нет места. Если из этого дираковского «моря» электронов с отрицательными энергиями удалить один электрон, то возникшая электронная «дырка» будет вести себя как положительно заряженный электрон. Позитрон был обнаружен в космических лучах К.Андерсоном (1932).

    По современной терминологии электрон и позитрон являются античастицами по отношению друг к другу. Согласно релятивистской квантовой механике, для частиц любого вида существуют соответствующие античастицы (античастица электрически нейтральной частицы может совпадать с ней). Отдельно взятый позитрон столь же стабилен, как и электрон, время жизни которого бесконечно, поскольку не существует более легких частиц с зарядом электрона. Однако в обычном веществе позитрон рано или поздно соединяется с электроном. (Вначале электрон и позитрон могут на короткое время образовать «атом», так называемый позитроний, сходный с атомом водорода, в котором роль протона выполняет позитрон.) Такой процесс соединения называется электрон-позитронной аннигиляцией; в нем полная энергия, импульс и момент импульса сохраняются, а электрон и позитрон превращаются в гамма-кванты, или фотоны, – обычно их два. (С точки зрения «моря» электронов данный процесс представляет собой радиационный переход электрона в так называемую дырку – незанятое состояние с отрицательной энергией.) Если скорости электрона и позитрона не очень велики, то энергия каждого из двух гамма-квантов приблизительно равна mс2. Это характеристическое излучение аннигиляции позволяет обнаруживать позитроны. Наблюдалось, например, такое излучение, исходящее из центра нашей Галактики. Обратный процесс превращения электромагнитной энергии в электрон и позитрон называется рождением электрон-позитронной пары. Обычно гамма-квант с высокой энергией «конвертируется» в такую пару, пролетая вблизи атомного ядра (электрическое поле ядра необходимо, поскольку при превращении отдельно взятого фотона в электрон-позитронную пару были бы нарушены законы сохранения энергии и импульса). Еще один пример – распад первого возбужденного состояния ядра 16О, изотопа кислорода.

    Испусканием электронов сопровождается один из видов радиоактивности ядер. Это бета-распад – процесс, обусловленный слабым взаимодействием, при котором нейтрон в исходном ядре превращается в протон. Наименование распада происходит от названия «бета-лучи», исторически присвоенного одному из видов радиоактивных излучений, которое, как потом выяснилось, представляет собой быстрые электроны. Энергия электронов этого излучения не имеет фиксированного значения, поскольку (в соответствии с гипотезой, выдвинутой Э.Ферми) при бета-распаде вылетает еще одна частица – нейтрино, уносящая часть энергии, выделяющейся при ядерном превращении. Основной процесс таков:

    Нейтрон ® протон + электрон + антинейтрино.

    Испускаемый электрон не содержится в нейтроне; появление электрона и антинейтрино представляет собой «рождение пары» из энергии и электрического заряда, освобождающихся при ядерном превращении. Существует также бета-распад с испусканием позитронов, при котором находящийся в ядре протон превращается в нейтрон. Подобные превращения могут также происходить в результате поглощения электрона; соответствующий процесс называется К-захватом. Электроны и позитроны испускаются при бета-распаде и других частиц, например мюонов.

    Роль в науке и технике.

    Быстрые электроны широко применяются в современной науке и технике. Они используются для получения электромагнитного излучения, например рентгеновского, возникающего в результате взаимодействия быстрых электронов с веществом, и для генерации синхротронного излучения, возникающего при их движении в сильном магнитном поле. Ускоренные электроны применяют и непосредственно, например в электронном микроскопе, или при более высоких энергиях – для зондирования ядер. (В таких исследованиях была обнаружена кварковая структура ядерных частиц.) Электроны и позитроны сверхвысоких энергий используются в электрон-позитронных накопительных кольцах – установках, аналогичных ускорителям элементарных частиц. За счет их аннигиляции накопительные кольца позволяют с высокой эффективностью получать элементарные частицы с очень большой массой.

    www.krugosvet.ru

    ЭЛЕКТРОН - это... Что такое ЭЛЕКТРОН?

  • Электрон (КА) — У этого термина существуют и другие значения, см. Электрон (значения). «Электрон 2» «Электрон» серия из четырёх советских искусственных спутников Земли, запущенных в 1964 году. Цель …   Википедия

  • Электрон — (Новосибирск,Россия) Категория отеля: 3 звездочный отель Адрес: 2 ой Краснодонский Переулок …   Каталог отелей

  • ЭЛЕКТРОН — (символ е , е), первая элем. ч ца, открытая в физике; матер. носитель наименьшей массы и наименьшего электрич. заряда в природе. Э. составная часть атомов; их число в нейтр. атоме равно ат. номеру, т. е. числу протонов в ядре. Заряд (е) и масса… …   Физическая энциклопедия

  • Электрон — (Москва,Россия) Категория отеля: 2 звездочный отель Адрес: Проспект Андропова 38 строение 2 …   Каталог отелей

  • Электрон — (e , e) (от греческого elektron янтарь; вещество, легко электризующееся при трении), стабильная элементарная частица с отрицательным электрическим зарядом e=1,6´10 19 Кл и массой 9´10 28 г. Относится к классу лептонов. Открыт английским физиком… …   Иллюстрированный энциклопедический словарь

  • ЭЛЕКТРОН — (е е ), стабильная отрицательно заряженная элементарная частица со спином 1/2, массой ок. 9.10 28 г и магнитным моментом, равным магнетону Бора; относится к лептонам и участвует в электромагнитном, слабом и гравитационном взаимодействиях.… …   Большой Энциклопедический словарь

  • электрон — сущ., кол во синонимов: 12 • дельта электрон (1) • лептон (7) • минерал (5627) • …   Словарь синонимов

  • ЭЛЕКТРОН — искусственный спутник Земли, созданный в СССР для изучения радиационных поясов и магнитного поля Земли. Запускались парами один по траектории, лежащей ниже, а другой выше радиационных поясов. В 1964 запущено 2 пары Электронов …   Большой Энциклопедический словарь

  • ЭЛЕКТРОН — ЭЛЕКТРОН, элктрона, муж. (греч. elektron янтарь). 1. Частица с наименьшим отрицательным электрическим зарядом, образующая в соединении с протоном атом (физ.). Движение электронов создает электрический ток. 2. только ед. Легкий магниевый сплав,… …   Толковый словарь Ушакова

  • ЭЛЕКТРОН — ЭЛЕКТРОН, а, м. (спец.). Элементарная частица с наименьшим отрицательным электрическим зарядом. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 …   Толковый словарь Ожегова

  • dic.academic.ru