53335531463039513235404944384142294843374734365045565452
XСкопируйте код и вставьте его на свой сайт.
Броуновское движение
Описание презентации по отдельным слайдам:
1 слайдРаботу выполнила: Макарова Екатерина, ученица 7 класса, ГОУ СОШ № 546 г.Москвы Руководитель: Казакова Ю.В., учитель физики
2 слайдВ 1827 году Броун, разглядывая под микроскопом выделенные из клеток пыльцы североамери-канского растения Clarkia pulchella взвешенные в воде цитоплазматические зёрна, неожиданно обнаружил, что они непрерывно дрожат и передвигаются с места на место.
Цель работы: пронаблюдать и изучить броуновское движение частиц, взвешенных в воде. Объект исследования: броуновское движение. Предмет исследования: особенности наблюдения и характер броуновского движения. Место проведения работы: Учебно-научный радиофизический центр МПГУ
4 слайдЗадачи исследования: Изучить историю открытия броуновского движения. Изучить значение открытия броуновского движения для развития науки. Выяснить влияние разных факторов на характер броуновского движения. Провести эксперимент по наблюдению броуновского движения. Методы исследования: Изучение литературы и материалов сайтов Интернета по данной теме. Изучение характера броуновского движения при помощи модели. Наблюдение броуновского движения.
5 слайдВ 1824 г. появляется новый тип микроскопа, обеспечивающий увеличение в 500-1000 раз. Он позволял увеличить частицы, до размера 0,1-1 мм Но в своей статье Броун специально подчеркивает, что у него были обычные двояковыпуклые линзы, значит он мог увеличивать объекты не более, чем в 500 раз, то есть частицы увеличивались до размера всего 0,05-0,5 мм. Величина пыльцевых клеток колеблется от 2,5 мкм до 250 мкм Броуновские частицы имеют размер порядка 0,1–1 мкм. Микроскопы 18 века
Ещё в 1670 году изобретатель микроскопа голландец Антони Левенгук возможно наблюдал аналогичное явление, так как его микроскоп давал увеличение до 300 раз, но зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука. Антони ван Левенгук (1632-1723)
7 слайдОтрывок из поэмы Лукреция Кара «О природе вещей» Вот посмотри: всякий раз, когда солнечный свет проникает В наши жилища и мрак прорезает своими лучами, Множество маленьких тел в пустоте, ты увидишь, мелькая, Мечутся взад и вперёд в лучистом сиянии света…
8 слайдНизкая температура (1 мин) Высокая температура (1 мин) Сравнение характера движения частицы при помощи модели броуновского движения
Выводы: Броуновские частицы движутся под влиянием беспорядочных ударов молекул. Броуновское движение является хаотичным. По траектории частицы можно судить об интенсивности движения, чем меньше масса частицы, тем интенсивней становится движение. Интенсивность броуновского движения прямо зависит от температуры. Броуновское движение никогда не прекращается.
10 слайдМариан Смолуховский (1872–1917) Впервые в 1904 году дал строгое объяснение броуновского движения
11 слайдАльберт Эйнштейн (1879-1955) В 1905 году создал первую количественную теорию броуновского движения. С помощью статистических методов он вывел формулу для среднего значения квадрата смещения броуновской частицы: где B - подвижность частицы, которая обратно пропорциональна вязкости среды и размеру частицы, t – время наблюдения, Т – температура жидкости. < r 2 > = 6kTBt
Жан Батист Перрен (1870 - 1942) В 1906 году начал проводить опыты, подтвердившие теорию Эйнштейна. Подводя итоги в 1912 году, он заявил: «Атомная теория восторжествовала. Некогда многочисленные, её противники повержены и один за другим отрекаются от своих взглядов, в течение столь долгого времени считавшихся обоснованными и полезными». В 1926 г. Перрен получил Нобелевскую премию за работу по «дискретной природе материи»
13 слайдБроуновское движение частицы гуммигута в воде. Точками отмечены последовательные положения частицы через 30 с. Наблюдения велись под микроскопом при увеличении ок. 3000. Размер частиц около 1 мкм. Одна клетка соответствует расстоянию 3,4 мкм.
14 слайдМИКРОСКОП NIKON Eclipse LV 100 Видеокамера Окуляр Предметный столик Объектив Монитор Винты для горизонтального перемещения предметного столика Винты для настройки резкости
МОЛОКО ГУАШЬ АКВАРЕЛЬ
22 слайдВыводы: 1. Броуновское движение могло случайно наблюдаться учёными до Броуна, но из-за несовершенства микроскопов и отсутствия представления о молеку-лярном строении веществ, оно никем не изучалось. После Броуна оно изучалось многими учёными, но дать ему объяснение никто не смог. 2. Создание количественной теории броуновского движения Эйнштейном и её экспериментальное подтверждение Перреном позволило убедительно доказать существование молекул и их непрерывного беспорядочного движения. 3. Причины броуновского движения - тепловое движение молекул среды и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих её молекул. 4. На интенсивность броуновского движения влияет размер и масса броуновской частицы, температура и вязкость жидкости. 5. Наблюдение броуновского движения весьма сложная задача, так как надо: уметь пользоваться микроскопом, исключить влияние негативных внешних факторов (вибрации, наклон стола), проводить наблюдение быстро, пока жидкость не испарилась.
Роль броуновского движения Броуновское движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.
24 слайдhttp://ru.wikipedia.org http://krugosvet.ru/enc/nauka_i_tehnika/fizika/BROUNOVSKOE_DVIZHENIE.html http://www.physics.nad.ru/Physics/Cyrillic/brow_txt.htm http://bse.sci-lib.com/article001503.html http://scorcher.ru/art/theory/determinism/broun.php http://marklv.narod.ru/mkt/ris2.htm http://elementy.ru/trefil/30 http://allphysics.ru/phys/brounovskoe-dvizhenie http://dxdy.ru/topic24041.html http://vita-club.ru/micros1.htm
Чтобы скачать материал, введите свой email, укажите, кто Вы, и нажмите кнопку
Нажимая кнопку, Вы соглашаетесь получать от нас email-рассылку
Если скачивание материала не началось, нажмите еще раз "Скачать материал".
765477217882838288199001958110199
336763367833680337703377133902339213392234028340823409734149
У вас есть презентация, загружайте:
Для того чтобы загрузить презентацию на сайт, необходимо зарегистрироваться.
uslide.ru
Описание презентации по отдельным слайдам:
1 слайдБроуновское движение Цель урока: формирование у учащихся нового понятия броуновского движения
2 слайд Описание слайда:1827 год, английский ботаник Р. Броун рассматривал в микроскоп споры растений, находящиеся в жидкости. Фронтальная работа «Наблюдение броуновского движения» Приборы и материалы: краска, растертая до мелких крупинок, вода, микроскоп. Сделать вывод по работе. Роберт Броун Первооткрыватель броуновского движения
3 слайд Описание слайда:Какова причина броуновского движения? Непрерывное, никогда не прекращающиеся движение молекул жидкости (газа), в кортом находятся крупинки твердого тела. Анализ опытов броуновского движения стр.26
4 слайд Описание слайда:Итог урока: 1. Что такое броуновская частица? 2. Что доказывает броуновское движение? 3. Решение качественных задач (Перишкин № 57 – 67.
5 слайд Описание слайда:Итог урока: Открытие броуновского движения имело огромное значение для изучения строения вещества. Оно показало, что все тела действительно состоят из отдельных частиц – молекул и что молекулы находятся в непрерывном беспорядочном движении
Найдите материал к любому уроку,указав свой предмет (категорию), класс, учебник и тему:
Выберите категорию: Все категорииАлгебраАнглийский языкАстрономияБиологияВсемирная историяВсеобщая историяГеографияГеометрияДиректору, завучуДоп. образованиеДошкольное образованиеДругоеДругойЕстествознаниеИЗО, МХКИзобразительное искусствоИностранные языкиИнформатикаИскусствоИспанский языкИсторияИстория РоссииИстория Средних вековИтальянский языкКлассному руководителюКультурологияЛитератураЛитературное чтениеЛогопедияМатематикаМировая художественная культураМузыкаМХКНачальные классыНемецкий языкОБЖОбществознаниеОкружающий мирОсновы безопасности жизнедеятельностиПриродоведениеРелигиоведениеРисованиеРусский языкСоциальному педагогуТехнологияУкраинский языкФизикаФизическая культураФилософияФинский языкФранцузский языкХимияЧерчениеЧтениеШкольному психологуЭкология
Выберите класс: Все классыДошкольники1 класс2 класс3 класс4 класс5 класс6 класс7 класс8 класс9 класс10 класс11 класс
Выберите учебник: Все учебники
Выберите тему: Все темы
также Вы можете выбрать тип материала:
Общая информация
Номер материала: ДБ-063760
Похожие материалы
Оставьте свой комментарийinfourok.ru
10/18/16
Броуновское движение.
БРОУНОВСКОЕ ДВИЖЕНИЕ
Броуновское движение – тепловое движение микроскопических взвешенных частиц твердого вещества, находящихся в жидкой или газообразной среде.
Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. Сейчас , чтобы повторить наблюдение Броуна , достаточно иметь не очень сильный микроскоп . В газе явление проявляется значительно ярче, чем в жидкости .
Роберт Броун – британский ботаник,член Лондонского королевского общества. Родился 21 декабря 1773 года в Шотландии.Учился в Эдинбургском университете, изучая медицину и ботанику.
Роберт Броун в 1827 году первым наблюдал явление движения молекул , рассматривая в микроскоп споры растений , находящихся в жидкости.
Броуновское движение никогда не прекращается.В капле воды , если она не высыхает , движение крупинок можно наблюдать в течение многих лет . Оно не прекращается ни летом, ни зимой , ни днем , ни ночью
Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой.
Когда мы видим под микроскопом движение крупинок , то не следует думать , что мы видим движение самих молекул . Молекулы нельзя видеть в обычный микроскоп , об их существовании и движении мы можем судить по тем ударом , которые они производят , толкая крупинки краски и заставляя их двигаться .
Можно привести такое сравнение . Группа людей , играя на воде в мяч , толкает его . От толчков мяч движется в разном направлении .
Если наблюдать эту игру с большой высоты , то людей не видно , а мяч беспорядочно движется будто без причины .
Значение открытия броуновского движения .
Броуновское движение показало ,что все тела состоят из отдельных частиц – молекул , которые находятся в непрерывном беспорядочном движении.
Факт существования броуновского движения доказывает молекулярное строение материи .
Домашнее задание
9,
Спасибо Вам за знания, работу и понимание!
multiurok.ru
Броуновское движение
Броуновское движение (или брауновское движение) – это непрерывное хаотическое движение малых частиц, взвешенных в жидкости или газе (при этом подразумевается, что сила тяжести не влияет на их движение).
Это явление впервые наблюдал Роберт Броун (Браун, годы жизни 1773 – 1858), когда рассматривал в микроскоп движение цветочной пыльцы, взвешенной в воде. В наше время для таких наблюдений используют маленькие части краски гуммигут, которая не растворяется в воде. В газе броуновское движение совершают, например, взвешенные в воздухе частицы пыли или дыма.
Броуновское движение частицы возникает потому, что импульсы, с которыми молекулы жидкости или газа действуют на эту частицу, не компенсируют друг друга. Молекулы среды (то есть молекулы газа или жидкости) движутся хаотично, поэтому их удары приводят броуновскую частицу в беспорядочное движение: броуновская частица быстро меняет свою скорость по направлению и по величине.
Броуновское движение – это тепловое движение, интенсивность которого возрастает с ростом температуры среды и продолжается неограниченно долго без каких-либо видимых изменений. Интенсивность броуновского движения также возрастает с уменьшением размера и массы частиц, а также при уменьшении вязкости среды.
Броуновское движение служит наиболее наглядным экспериментальным подтверждением существования атомов (молекул) и их хаотического теплового движения. Полная молекулярно-кинетическая теория броуновского движения была дана в 1905 – 1906 годах немецким учёным Альбертом Эйнштейном (1879 – 1955) и польским физиком Марианом Смолуховским (1872 – 1917). В 1908 – 1911 годах французский учёный Жан Перрен (1870 – 1942) провёл серию экспериментов по изучению броуновского движения и окончательно подтвердил закономерности этого движения, предсказанные на основе молекулярно-кинетической теории.
Если фиксировать положение частицы через небольшие равные промежутки времени, например, через каждые 30 секунд, то построенная таким методом траектория движения частицы будет представлять собой ломаную линию. На рис. 1.2 представлена траектория движения частицы краски гуммигута в воде (по Перрену). Радиус частиц составляет 0,52*10-6 м, расстояние между делениями сетки 3,4*10-6 м.
Броуновское движение, например, в метрологии, является основной причиной, по которой точность чувствительных измерительных приборов ограничена, потому что тепловое движение атомов деталей приборов и окружающей среды вызывает дрожание стрелок измерительных приборов.
Траектория движения броуновской частицы (частиц краски гуммигута в воде по Перрену).
infourok.ru
Методическая разработка урока по физике в 7 классе
учитель Тамарова Ирина СергеевнаТема урока: Диффузия. Движение молекул. Броуновское движение.
Цель урока: Изучение сущности процесса диффузии, наблюдение явления диффузии в природе, технике и быту.
Задачи урока: Образовательные: - сформировать представление о диффузии, как о явлении самопроизвольного смешивания веществ , вследствие движения молекул;- сформировать представление о том, что диффузия наблюдается в твердом, жидком и газообразном состояниях вещества;- представление о значении диффузии для неживой и живой природы.Развивающие: - учить логически правильно выражать свои мысли средством физико-математического языка;- развивать умения анализировать ход эксперимента, на его основе формулировать логические выводы;- развивать ассоциативное мышление.Воспитательные: - формирование умения использовать теоретические знания для понимания сущности явлений происходящих в природе;- воспитывать умение видеть физику вокруг себя, в различных областях жизнедеятельности.Планируемые результаты: уметь описывать и объяснять явление диффузии, видеть проявление этого явления в окружающем нас мире.
Оборудование кабинета к уроку: чашки Петри, перманганат калия, пинцеты, пластиковые стаканы, кофе, холодная и тёплая вода.
Современному человеку нельзя обойтись без знаний основ физики, чтобы иметь правильное представление об окружающем нас мире. Сегодня мы продолжим изучать законы природы.
Повторение изученного материала.Михаил Васильевич Ломоносов в 1745 году разграничил понятия атом и молекула.Что такое молекула? (Молекула – наименьшая частица вещества)Из чего состоят молекулы? (Молекулы состоят из атомов)Опишите опыт, с помощью которого можно оценить размеры молекул?Из каких частиц состоит молекула воды?Можно ли утверждать, что молекулы одного и того же вещества одинаковые, а разные – различные по размерам и форме?Справедливо ли утверждение о том, что при нагревании молекулы вещества увеличиваются в размерах?Можно ли говорить, что при нагревании вещества увеличиваются промежутки между молекулами?
Актуализация знаний.-Ребята, я сейчас распылю туалетную воду. Вы, если почувствуете запах, должны поднять руку. Постепенно подняли руки все ребята. Почему вы почувствовали запах?Из предположений и ответов учащихся учитель делает уточнение: молекулы веществ движутся и проникают между друг другом.
Изучение нового материала.Распространение запахов возможно благодаря движению молекул веществ. Это движение носит непрерывный и беспорядочный характер. Сталкиваясь с молекулами газов, входящих в состав воздуха, молекулы духов много раз меняют направление своего движения и, беспорядочно перемещаясь, разлетаются по всей комнате.Слайд 1Беспорядочное движение частиц жидкостей впервые было доказано ботаником, Почетным хранителем ботанического отделения Британского музея шотландцем Робертом Броуном в 1827 году. Рассматривая в микроскоп пыльцу, размешанную с водой, он увидел непрерывно хаотично двигающиеся темные точки. Более крупные двигались медленнее, не спеша меняли свое направление. Те, которые были меньше, прыгали беспорядочно, бросаясь из стороны в сторону. Ученый задумался: «Почему?» . Сначала Броун решил, что в поле микроскопа попали некие живые существа, однако так же вели себя и частицы мертвых растений. Проведя опыты с мельчайшими частицами угля, сажи, стекла, Броун также наблюдал их беспорядочное движение, но объяснить это явление он не смог.Слайд 2А как вы думаете, почему частички пыльцы двигались? Что способствовало движению пыльцы. Впоследствии это явление назвали броуновским движением.
Слайд 3Позднее Эйнштейн объяснил, что взвешенная в воде спора подвергается «бомбардировке» со стороны молекул воды, а так как молекулы воды в микроскоп не видны, движение спор Броуну казалось беспричинным.Слайд 4Явление, при котором происходит взаимное проникновения молекул одного вещества между молекулами другого, называется диффузией. Благодаря чему происходит процесс диффузии? Причина диффузии - беспорядочное движение молекул.
В начале урока мы наблюдали процесс диффузии в газах. А возможна ли диффузия в жидкостях? На ваших столах стоят чашки Петри с водой. Бросьте несколько кристалликов перманганата калия в воду. Не забываем про технику безопасности: избегайте контакта кожи и слизистых оболочек с кристаллами перманганата калия.
- Что вы наблюдаете?
- Быстро ли растворяются кристаллики марганцовки? Почему?
- Благодаря чему происходит растворение кристалликов марганцовки в воде?
- Возможен ли процесс диффузии в твердых телах?
Приведу вам пример. Если отшлифованные пластины свинца и золота положить одна на другую и сжать грузом, то при обычной комнатной температуре (около 20°С) за 5 лет золото и свинец взаимно проникнут друг в друга на расстояние всего около 1 мм.
-Какой вывод можно сделать по приведенному примеру?
Диффузия в твёрдых телах происходит чрезвычайно медленно.
- Как вы думаете, почему?
Давайте посмотрим как протекает диффузия в твёрдых телах в природе.
Слайд 5
-Какой вывод можно сделать по результатам рассмотрения диффузии в газах, жидкостях и твердых телах?
Молекулы веществ находящихся в любом агрегатном состоянии, непрерывно двигаются, т.е. диффузия происходит и в газах, и в жидкостях, и в твёрдых телах.
- А что можно сказать о скорости протекания диффузии в различных агрегатных состояниях вещества?
Молекулы газов свободны, так как расстояние между молекулами много больше размеров молекул, двигаются с большими скоростями. Молекулы жидкостей расположены так же беспорядочно, как и в газах, но значительно плотнее друг к другу и поэтому взаимодействуют друг с другом сильнее, чем в газах. Каждая молекула, находясь в окружении соседних молекул, как бы топчется на одном месте и медленно перемещается внутри жидкости. Молекулы твердых веществ расположены в строгом порядке, образовывая пространственную решетку, чем обеспечивается сохранение формы и объема твердого тела. Частицы твердого тела совершают колебания около положения равновесия, которое остается неизменным очень продолжительное время. Наиболее быстро диффузия происходит в газах, медленнее в жидкостях и медленнее всего в твёрдых телах.
Таким образом, мы познакомились с одной из закономерностей диффузии:
Диффузия протекает в веществах, находящихся в различных агрегатных состояниях, но с разной скоростью. Наиболее быстро диффузия происходит в газах, медленнее в жидкостях и медленнее всего в твёрдых телах.
Слайд 6Как вы думаете, в каких средах диффузия происходит быстрее? От чего еще зависит скорость диффузии? Проведём ещё один опыт:
В два одинаковых стакана налейте одинаковое количество воды, но различной температуры. Помните о технике безопасности.
Бросьте в стаканы несколько крупинок растворимого кофе. Пронаблюдаете, что происходит.
Имеет ли здесь место явление диффузии? Почему?
Что вы можете сказать о скорости протекания диффузии в стакане с холодной водой и с теплой водой?
Скорость диффузии увеличивается с ростом температуры, так как молекулы взаимодействующих тел начинают двигаться быстрее.
Процесс диффузии ускоряется с увеличением температуры. Таким образом, явление диффузии протекает по-разному при разной температуре: чем выше температура вещества, тем быстрее происходит диффузия.
Явление диффузии имеет важные проявления в природе, используется в науке и на производстве.(Сообщения о проявлениях диффузии учащимися)Это интересно! Диффузия в растительном миреДействительно, в растительном мире очень велика роль диффузии. Например, большое развитие листовой кроны деревьев объясняется тем, что диффузионный обмен сквозь поверхность листьев выполняет не только функцию дыхания, но частично и питания. В настоящее время широко практикуется внекорневая подкормка плодовых деревьев путем опрыскивания их кроны.Большую роль играют диффузные процессы в снабжении природных водоёмов и аквариумов кислородом. Кислород попадает в более глубокие слои воды в стоячих водах за счёт диффузии через их свободную поверхность. Поэтому нежелательны всякие ограничения свободной поверхности воды. Так, например, листья или ряска, покрывающие поверхность воды, могут совсем прекратить доступ кислорода к воде и привести к гибели ее обитателей. По этой же причине сосуды с узким горлом непригодны для использования в качестве аквариума.
Роль диффузии в пищеварении и дыхании человекаНаибольшее всасывание питательных веществ происходит в тонких кишках, стенки которых специально для этого приспособлены. Площадь внутренней поверхности кишечника человека равна 0,65 м2. Она покрыта ворсинками – микроскопическими образованиями слизистой оболочки высотой 0,2-1мм, за счет чего площадь реальной поверхности кишечника достигает 4-5 м2, т.е. достигает в 2-3 раза больше площади поверхности всего тела. Процесс всасывания питательных веществ в кишечнике возможен благодаря диффузии. Дыхание – перенос кислорода из окружающей среды внутрь организма сквозь его покровы – происходит тем быстрее, чем больше площадь поверхности тела и окружающей среды, и тем медленнее, чем толще и плотнее покровы тела. Отсюда понятно, что малые организмы, у которых площади поверхности велики по сравнению с объемом тела, могут обходиться вовсе без специальных органов дыхания, удовлетворяясь притоком кислорода исключительно через наружную оболочку. А как же дышит человек? У человека в дыхании принимает участие вся поверхность тела – от самого толстого эпидермиса пяток до покрытой волосами кожи головы. Особенно интенсивно дышит кожа на груди, спине и животе. Интересно, что по интенсивности дыхания эти участки кожи значительно превосходят легкие. С одинаковой по размеру дыхательной поверхности здесь может поглощаться кислорода на 28% а выделяться углекислого газа даже на 54% больше, чем в легких. Однако во всем дыхательном процессе участие кожи ничтожно по сравнению с легкими, так как общая площадь поверхности легких, составляет около 90-100 квадратных метров а общая площадь поверхности кожи человека около 2 квадратных метров, т.е., в 45-50 раз меньше. Таким образом, диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Благодаря диффузии кислород из легких пpoникaeт в кровь человека, а из крови – в ткани. Диффузия в медицине.Одним из видов процесса диффузии является одностороннее проникновение молекул одних веществ в другие. Научным языком это звучит так: диффузия веществ через полупроницаемые мембраны. Такой процесс называется осмосом. Осмос от греческого – толчок, давление. В почвенных растворах содержатся минеральные соли и органические соединения. Вода из почвы попадает в растение путем осмоса через полупроницаемые мембраны корневых волосков. Концентрация воды в почве оказывается выше, чем внутри корневых волосков, поэтому вода проникает в зерно и дает жизнь растению. Аналогичный процесс применяется в медицине, например, в аппарате «искусственная почка». Боле 30 лет назад немецкий врач Вильям Кольф применил аппарат «искусственная почка». С тех пор он применяется: для неотложной хронической помощи при острой интоксикации; для подготовки больных с хронической почечной недостаточностью к трансплантации почек; для длительного (10-15 лет) жизнеобеспечения больных с хроническим заболеванием почек.Применение диффузии в технике.
Диффузия в промышленности.
На явлении диффузии основана диффузионная сварка металлов. Методом диффузионной сварки соединяют между собой металлы, неметаллы, металлы и неметаллы, пластмассы. Детали помещают в закрытую сварочную камеру с сильным разряжением, сдавливают и нагревают до 800 градусов. При этом происходит интенсивная взаимная диффузия атомов в поверхностных слоях контактирующих материалов. Диффузионная сварка применяется в основном в электронной и полупроводниковой промышленности, точном машиностроении.Для извлечения растворимых веществ из твердого измельченного материала применяют диффузионный аппарат. Такие аппараты распространены главным образом в свеклосахарном производстве, где их используют для получения сахарного сока из свекловичной стружки, нагреваемой вместе с водой.Существенную роль в работе ядерных реакторов играет диффузия нейтронов, то есть распространение нейтронов в веществе, сопровождающееся многократным изменением направления и скорости их движения в результате столкновения с ядрами атомов. Диффузия нейтронов в среде аналогична диффузии атомов и молекул в газах и подчиняется тем же закономерностям.На явлении диффузии основан процесс металлизации – покрытия поверхности изделия слоем металла или сплава для сообщения ей физических, химических и механических свойств, отличных от свойств металлизируемого материала. Он применяется для защиты изделий от коррозии, износа, повышения контактной электрической проводимости, в декоративных целях. Для повышения твердости и жаростойкости стальных деталей применяют цементацию. Она заключается в том, что стальные детали помещают в ящик с графитовым порошком, который устанавливают в термической печи. Атомы углерода вследствие диффузии проникают в поверхностный слой деталей. Глубина проникновения зависит от температуры и времени выдержки деталей в термической печи.
Ребята, а где мы встречаемся с процессом диффузии в повседневной жизни?Засолка и засахаривание, смешивание различных ингредиентов при приготовлении пищи, склеивание поверхностей.
Подведение итогов. Рефлексия.
Тест Распечатан на листах для каждого ( 5 мин)
1. Какое из приведенных ниже утверждений верно?
А) только газы состоят из молекул
Б) только жидкости состоят из молекул
В) все тела состоят из молекул
2. В каких телах диффузия, при одинаковых температурах, происходит быстрее?
А) в газах
Б) в жидкостях
В) в твердых телах
3. Что доказывает процесс диффузии?
А) что молекулы взаимодействуют между собой
Б) что молекулы состоят из атомов
В) что молекулы непрерывно хаотично движутся
4. Как зависит скорость протекания диффузии от температуры?
А) не зависит
Б) чем ниже температура вещества, тем меньше скорость
В) чем выше температура вещества, тем меньше скорость
5. Какое явление доказывает движение молекул веществ
А) броуновское движение
Б) механическое движение
В) среди ответов нет правильного
Диффузия играет большую роль в жизни человека. Она используется не только на предприятиях и в промышленности, но и в быту. Благодаря диффузии происходит множество важных жизненных процессов, обеспечивающих жизнь на Земле и существование всего живого.
Домашнее задание: составить рассказ о вредных проявлениях процесса диффузии.
infourok.ru
Слайд 1
Презентация по физике «Броуновское движение» ученицы 7 класса ГБОУ СОШ № 1465 имени адмирала Н.Г. Кузнецова Юлдашевой Лолиты Учитель физики: Л.Ю. КругловаСлайд 2
Броуновское движение
Слайд 3
Биография Роберта Броуна (1773-1858) Британский (шотландский) ботаник конца XVIII — первой половины XIX века, морфолог и систематик растений, первооткрыватель «броуновского движения ». Родился 21 декабря 1773 года в Монтрозе в Шотландии, учился в Абердине, в Эдинбургском университете в 1789—1795 годах изучал медицину и ботанику. В 1795 году поступил фенрихом (прапорщиком) и помощником хирурга в Северный полк шотландской милиции, с которым находился в Ирландии. Здесь он собирал местные растения и встретил ботаника сэра Джозефа Банкса . Усердные занятия естественными науками снискали ему дружбу Банкса , по рекомендации которого он был назначен ботаником в экспедиции, отправленной в 1801 году на корабле « Инвестигейтор » (англ. Investigator ) под начальством капитана Флиндерса для исследования берегов Австралии. Вместе с художником Фердинандом Бауэром он посетил некоторые части Австралии, затем Тасманию и острова Бассова пролива. Более всего его интересовали флора и фауна этих стран. В 1805 году Броун возвратился в Англию, привезя с собой около 4 000 видов австралийских растений, множество птиц и минералов для коллекции Банкса ; он потратил несколько лет на разработку этого богатого материала, какого ещё никто никогда не привозил из дальних стран. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя ученого сейчас широко известно вовсе не из-за этих работ. Член Лондонского королевского общества (с 1810 года). С 1810 по 1820 год Роберт Броун заведовал Линнеевской библиотекой и обширными коллекциями своего покровителя Банкса , президента Лондонского королевского общества. В 1820 году он стал библиотекарем и хранителем ботанического отделения Британского музея , куда после смерти Банкса были переданы коллекции последнего.
Слайд 4
Опыт Роберта Броуна Броун в тиши лондонского кабинета в 1827 г. изучал посредствам микроскопа добытые экземпляры растений . Очередь дошла до цветочной пыльцы, представляющей собой, по сути, мелкодисперсные крупинки. Капнув на покровное стеклышко капельку воды, Броун внёс туда некоторое количество цветочной пыльцы. Посмотрев в микроскоп, Броун обнаружил, что в фокальной плоскости микроскопа происходит непонятное. Частицы пыльцы постоянно перемещались хаотичным образом, не позволяя исследователю их рассмотреть. Броун решил поведать о своих наблюдениях коллегам. Опубликованная Броуном статья имела типичное для того неторопливого времени название: «Краткий отчёт о микроскопических наблюдениях, проведенных над частицами в июне и августе 1827 г., содержащимися в пыльце растений; и о существовании активных молекул в органических и неорганических телах».
Слайд 5
Броуновское движение Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более, что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях.
Слайд 6
Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788), автор 36-томной Естественной истории. Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».
Слайд 7
Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».
Слайд 8
Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда. Качественно картина была вполне правдоподобной и даже наглядной. Примерно так же должны перемещаться маленькая веточка или жучок, которых толкают (или тянут) в разные стороны множество муравьев. Эти более мелкие частицы на самом деле были в лексиконе ученых, только их никто никогда не видел. Называли их молекулами; в переводе с латинского это слово и означает «маленькая масса».
Слайд 9
Траектории движения броуновских частиц
Слайд 10
Броуновские частицы имеют размер порядка 0,1–1 мкм, т.е. от одной тысячной до одной десятитысячной доли миллиметра, потому-то Броуну и удалось разглядеть их перемещение, что он рассматривал крошечные цитоплазматические зернышки, а не саму пыльцу (о чем часто ошибочно пишут). Дело в том, что клетки пыльцы слишком большие. Так, у пыльцы луговых трав, которая переносится ветром и вызывает аллергические заболевания у людей (поллиноз), размер клеток обычно находится в пределах 20 – 50 мкм, т.е. они слишком велики для наблюдения броуновского движения. Важно отметить также, что отдельные передвижения броуновской частицы происходят очень часто и на очень малые расстояния, так что увидеть их невозможно, а под микроскопом видны перемещения, происшедшие за какой-то промежуток времени. Казалось бы, сам факт существования броуновского движения однозначно доказывал молекулярное строение материи, однако даже в начале 20 в. были ученые, и в их числе – физики и химики, которые не верили в существование молекул. Атомно-молекулярная теория лишь медленно и с трудом завоевывала признание.
Слайд 11
Броуновское движение и диффузия . Перемещение броуновских частиц внешне весьма напоминает перемещение отдельных молекул в результате их теплового движения. Такое перемещение называется диффузией. Еще до работ Смолуховского и Эйнштейна были установлены законы движения молекул в наиболее простом случае газообразного состояния вещества. Оказалось, что молекулы в газах движутся очень быстро – со скоростью пули, но далеко «улететь» не могут, так как очень часто сталкиваются с другими молекулами. Например, молекулы кислорода и азота в воздухе, двигаясь в среднем со скоростью примерно 500 м/с, испытывают каждую секунду более миллиарда столкновений. Поэтому путь молекулы, если бы могли за ним проследить, представлял бы собой сложную ломаную линию. Подобную же траекторию описывают и броуновские частицы, если фиксировать их положение через определенные промежутки времени. И диффузия, и броуновское движение являются следствием хаотичного теплового движения молекул и потому описываются сходными математическими зависимостями. Различие состоит в том, что молекулы в газах движутся по прямой, пока не столкнутся с другими молекулами, после чего меняют направление движения.
Слайд 12
Броуновская же частица никаких «свободных полетов», в отличие от молекулы, не совершает, а испытывает очень частые мелкие и нерегулярные «дрожания», в результате которых она хаотически смещается то в одну, то в другую сторону. Как показали расчеты, для частицы размером 0,1 мкм одно перемещение происходит за три миллиардные доли секунды на расстояние всего 0,5 нм (1 нм = м ). По меткому выражению одного автора, это напоминает перемещения пустой банки из-под пива на площади, где собралась толпа людей. Диффузию наблюдать намного проще, чем броуновское движение, поскольку для этого не нужен микроскоп: наблюдаются перемещения не отдельных частиц, а огромной их массы, нужно только обеспечить, чтобы на диффузию не накладывалась конвекция – перемешивание вещества в результате вихревых потоков (такие потоки легко заметить, капнув каплю окрашенного раствора, например, чернил, в стакан с горячей водой).
Слайд 13
Причины Броуновского движения. Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул — мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют ), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда — такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии .
nsportal.ru
Описание презентации по отдельным слайдам:
1 слайд Описание слайда:Броуновское движение. Диффузия
2 слайд Описание слайда: 3 слайд Описание слайда: 4 слайд Описание слайда: 5 слайд Описание слайда: 6 слайд Описание слайда: 7 слайд Описание слайда: 8 слайд Описание слайда: 9 слайд Описание слайда: 10 слайд Описание слайда: 11 слайд Описание слайда:С повышением температуры увеличивается скорость движения молекул С повышением температуры ускоряется процесс диффузии
12 слайд Описание слайда: 13 слайд Описание слайда:Где быстрее протекает диффузия? а) в твердых телах; б) в жидкости; в) в газах. Все тела состоят из отдельных частиц – молекул, которые: а) находятся в непрерывном беспорядочном движении; б) находятся в заторможенном состоянии; в) находятся в состоянии покоя.
14 слайд Описание слайда:В каких телах возможна диффузия? а) в твердых и жидких; б) в твердых, жидких и газообразных; в) в газообразных и жидких. Как изменяется скорость диффузии с увеличением температуры? а) уменьшается; б) увеличивается; в) остается неизменной.
15 слайд Описание слайда:Домашнее задание: § 9, 10
Найдите материал к любому уроку,указав свой предмет (категорию), класс, учебник и тему:
Выберите категорию: Все категорииАлгебраАнглийский языкАстрономияБиологияВсемирная историяВсеобщая историяГеографияГеометрияДиректору, завучуДоп. образованиеДошкольное образованиеДругоеДругойЕстествознаниеИЗО, МХКИзобразительное искусствоИностранные языкиИнформатикаИскусствоИспанский языкИсторияИстория РоссииИстория Средних вековИтальянский языкКлассному руководителюКультурологияЛитератураЛитературное чтениеЛогопедияМатематикаМировая художественная культураМузыкаМХКНачальные классыНемецкий языкОБЖОбществознаниеОкружающий мирОсновы безопасности жизнедеятельностиПриродоведениеРелигиоведениеРисованиеРусский языкСоциальному педагогуТехнологияУкраинский языкФизикаФизическая культураФилософияФинский языкФранцузский языкХимияЧерчениеЧтениеШкольному психологуЭкология
Выберите класс: Все классыДошкольники1 класс2 класс3 класс4 класс5 класс6 класс7 класс8 класс9 класс10 класс11 класс
Выберите учебник: Все учебники
Выберите тему: Все темы
также Вы можете выбрать тип материала:
Общая информация
Номер материала: ДБ-231308
Похожие материалы
Оставьте свой комментарийinfourok.ru