Физика 9 класс объяснение тем: Понятие материальной точки. Системы отсчёта. Физика, 9 класс: уроки, тесты, задания.

Формулы по физике 9 класса. Все формулы по физике за 9 класс с пояснениями и определениями

ЗаконФормулаОпределениеЕдиницы измерения
ЗАКОНЫ ВЗАИМОДЕЙСТВИЯ И ДВИЖЕНИЯ ТЕЛ
Вычисление перемещения АВ2 = АС2 + ВС2Перемещение – вектор, соединяющий начальную точку движения тела с его конечной точкой.
Проекция вектора перемещенияSx = x2 – x1x1 – начальная координата, [м]
x2 – конечная координата, [м]
Sx – перемещение, [м]
Формула расчета скорости движения телаv = s/tСкорость – физическая величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло.v – скорость, [м/с]
s – путь, [м]
t – время, [c]
Уравнение движенияx = x0 + vxtx0 – начальная координата, [м]
x – конечная координата, [м]
v – скорость, [м/с]
t – время, [c]
Формула для вычисления ускорения движения телаa = v — v0⃗/tУскорение – физическая величина, которая характеризует быстроту изменения скорости.a – ускорение, [м/с2]
v – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
t – время, [c]
Уравнение скоростиv = v0⃗+ atv – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
a – ускорение, [м/с2]
t – время, [c]
Уравнение ГалилеяS = v0t + at2/2S – перемещение, [м]
v – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
a – ускорение, [м/с2]
t – время, [c]
Закон изменения координаты тела при прямолинейном равноускоренном движенииx = x0 + v0t + at2/2x0 – начальная координата, [м]
x – конечная координата, [м]
v – конечная скорость, [м/с]
v0 – начальная скорость, [м/с]
a – ускорение, [м/с2]
t – время, [c]
Первый закон НьютонаЕсли на тело не действуют никакие тела либо их действие скомпенсировано, то это тело будет находиться в состоянии покоя или двигаться равномерно и прямолинейно.
Второй закон Ньютонаa = F ⃗/mУскорение, приобретаемое телом под действием силы, прямо пропорционально величине этой силы и обратно пропорционально массе тела.a – ускорение, [м/с2]
F – сила, [Н]
m – масса, [кг]
Третий закон Ньютона|F1⃗ |=|F2⃗|
F11 ⃗ = -F2
Сила, с которой первое тело действует на второе, равна по модулю и противоположна по направлению силе, с которой второе тело действует на первоеF – сила, [Н]
Формула для вычисления высоты, с которой падает телоH=gt2/2Н – высота, [м]
t – время, [c]
g ≈ 9,81 м/с2 – ускорение свободного падения
Формула для вычисления высоты при движении вертикально вверхh=v0t — gt2/2h – высота, [м]
v0 – начальная скорость, [м/с]
t – время, [c]
g ≈ 9,81 м/с2 – ускорение свободного падения
Формула для вычисления веса тела при движении вверх с ускорениемP = m (g + a)P – вес тела, [Н]
m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
a – ускорение тела, [м/с2]
Формула для вычисления веса тела при движении вниз с ускорениемP = m (g – a)P – вес тела, [Н]
m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
a – ускорение тела, [м/с2]
Формула законаF = Gm1m2/r2Закон всемирного тяготения: два тела притягиваются друг к другу с силой, прямо пропорциональной произведению масс этих тел и обратно пропорциональной квадрату расстояния между ними.F – сила, [Н]
G = 6,67 · 10-11 [Н·м2/кг2] – гравитационная постоянная
m – масса тела, [кг]
r – расстояние между телами, [м]
Формула расчета ускорения свободного падения на разных планетахg = G Mпл/Rпл2g – ускорение свободного падения, [м/с2]
G = 6,67 · 10-11 [Н·м2/кг2 – гравитационная постоянная
M – масса планеты, [кг]
R – радиус планеты, [м]
Формула расчета ускорения свободного паденияg = GM3/(R3+H)2g – ускорение свободного падения, [м/с2]
G = 6,67 · 10-11 [Н·м2/кг2 – гравитационная постоянная
M – масса Земли, [кг]
R – радиус Земли, [м]
Н – высота тела над Землей, [м]
Формула расчета центростремительного ускоренияа=υ2/ra – центростремительное ускорение, [м/с2]
v – скорость, [м/с]
r – радиус окружности, [м]
Формула периода движения по окружностиT = 1/ν = (2πr)/υ = t/NТ – период, [с]
ν – частота вращения,
-1]
t – время, [с]
N – число оборотов
Формула расчета угловой скоростиω = 2π/T = 2πν = υrω – угловая скорость, [рад/с]
υ – линейная скорость, [м/с]
Т – период, [с]
ν – частота вращения, [с-1]
r – радиус окружности, [м]
Формула импульса телаp = mvИмпульсом называют произведение массы тела на его скорость.p – импульс тела, [кг·м/с]
m – масса тела, [кг]
υ – скорость, [м/с]
Формула закона сохранения импульсаp1 + p2 = p1’ + p2
m1v + m2u = m1v’ + m2u’
Закон сохранения импульса: в замкнутой системе импульс всех тел остается величиной постоянной.p – импульс тела, [кг·м/с]
m – масса тела, [кг]
υ – скорость 1-го тела, [м/с]
u – скорость 2-го тела, [м/с]
Формула импульса силыP = Ftp – импульс тела, [кг·м/с]
F – сила, [Н]
t – время, [c]
Формула механической работыA = FsМеханическая работа – физическая величина, равная произведению модуля силы на величину перемещения тела в направлении действия силыA – работа, [Дж]
F – сила, [Н]
s – пройденный путь, [м]
Формула расчета мощностиN = A/tМощность – физическая величина, характеризующая быстроту совершения механической работы.N – мощность, [Вт]
A – работа, [Дж]
t – время, [c]
Формула для нахождения коэффициента полезного действия (КПД)η = Aп/Aз∙100КПД – отношение полезной работы к затраченной работе.Aп – полезная работа, [Дж]
Aз – затраченная работа, [Дж]
Формула расчета потенциальной энергииEk = mv2/2Кинетическая энергия – энергия, которой обладает тело вследствие своего движения.Ek – кинетическая энергия тела, [Дж]
m – масса тела, [кг]
v – скорость движения тела, [м/с]
Формула закона сохранения полной механической энергииmv12/2 + mgh1 = mv22/2 + mgh2Закон сохранения полной механической энергии: полная механическая энергия тела, на которое не действуют силы трения и сопротивления, в процессе его движения остается неизменной.m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
v1 – скорость тела в начальный момент времени, [м/с]
v2 – скорость тела в конечный момент времени, [м/с]
h1 – начальная высота, [м]
h2 – конечная высота, [м]
Формула силы тренияFтр = μmgСила трения – сила, возникающая при соприкосновении двух тел и препятствующая их относительному движению.Fтр – сила трения, [Н]
μ – коэффициент трения
m – масса тела, [кг]
g ≈ 9,81 м/с2 – ускорение свободного падения
Уравнение колебанийx = A cos (ωt + φ0)А – амплитуда колебаний, [м]
х – смещение, [м]
t – время, [c]
ω – циклическая частота, [рад/с]
φ0 – начальная фаза, [рад]
Формула периодаT = 1/ν = 2πr/υ = t/NТ – период, [с]
ν – частота колебании, [с-1]
t – время колебании, [с]
N – число колебаний
Формула периода для математического маятникаT= 2π √L/gТ – период, [с]
g ≈ 9,81 м/с2 – ускорение свободного падения
L – длина нити, [м]
Формула периода для пружинного маятникаT = 2π √m/KТ – период, [с]
m – масса груза, [кг]
К – жесткость пружины, [Н/м]
Формула длины волныλ = υТ = υ/νλ – длина волны, [м]
Т – период, [с]
ν – частота, [с-1]
υ – скорость волны, [м/с]
Формула расчета плотности телаρ=m/VПлотность вещества – показывает, чему равна масса вещества в единице объема.ρ – плотность, [кг/м3]
m – масса, [кг]
V – объем тела, [м3]
Формула гидростатического давления жидкостиp = ρghp – давление, [Па], [Н/м]
ρ – плотность жидкости, [кг/м3]
g ≈ 9,81 м/с2 – ускорение свободного падения
h – высота столба жидкости, [м]
Формула силы АрхимедаFA = ρgVЗакон Архимеда: на всякое тело, погруженное в жидкость (газ(, действует выталкивающая сила, равная весу вытесненной жидкости (газа).FА – сила Архимеда, [Н]
ρ – плотность жидкости или газа [кг/м3]
g ≈ 9,81 м/с2 – ускорение свободного падения
V – объем тела, [м3]
ЭЛЕКТРОМАГНИТНОЕ ПОЛЕ
Формула расчета силы АмпераFA = BIL sinαЗакон Ампера: сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником.FA – сила Ампера, [Н]
В – магнитная индукция, [Тл]
I – сила тока, [А]
L – длина проводника, [м]
Формула расчета силы ЛоренцаFл = q B υ sinαСила Лоренца – сила, действующая на точечную заряженную частицу, движущуюся в магнитном поле. Она равна произведению заряда, модуля скорости частицы, модуля вектора индукции магнитного поля и синуса угла между вектором магнитного поля и скоростью движения частицы.Fл – сила Лоренца, [Н]
q – заряд, [Кл]
В – магнитная индукция, [Тл]
υ – скорость движения заряда, [м/с]
Формула радиуса движения частицы в магнитном полеr = mυ/qBr – радиус окружности, по которой движется частица в магнитном поле, [м]
m – масса частицы, [кг]
q – заряд, [Кл]
В – магнитная индукция, [Тл]
υ – скорость движения заряда, [м/с]
Формула для вычисления магнитного потокаФ = B S cosαФ – магнитный поток, [Вб]
В – магнитная индукция, [Тл]
S – площадь контура, [м2]
Формула для вычисления величины зарядаq = ItЗаряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику.q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Закон Ома для участка цепиI=U/RЗакон Ома: сила тока в участке цепи прямо пропорциональна напряжению на концах этого участка и обратно пропорциональна его сопротивлению.I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Формула для вычисления удельного сопротивления проводникаR = ρ * L/S
ρ = R * S/L
Удельное сопротивление – величина, характеризующая электрические свойства вещества, из которого изготовлен проводник.ρ – удельное сопротивление вещества, [Ом·мм2/м]
R – сопротивление, [Ом]
S – площадь поперечного сечения проводника, [мм2]
L – длина проводника, [м]
Законы последовательного соединения проводниковI = I1 = I2
U = U1 + U2
Rобщ = R1 + R2
Последовательным соединением называется соединение, когда элементы идут друг за другом.I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Законы параллельного соединения проводниковU = U1 = U2
I = I1 + I2
1/Rобщ = 1/R1 +1/R2
Параллельным соединением проводников называется такое соединение, при котором начала и концы проводников соединяются вместе.I – сила тока, [А]
U – напряжение, [В]
R – сопротивление, [Ом]
Формула для вычисления величины заряда.q = ItЗаряд – это есть произведение силы тока на время, в течение которого этот заряд протекает по проводнику.q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Формула для нахождения работы электрического токаA = Uq
A = UIt
Работа – это величина, которая характеризует превращение энергии из одного вида в другой, т.е. показывает, как энергия электрического тока, будет превращаться в другие виды энергии – механическую, тепловую и т. д.
Работа электрического поля – это произведение электрического напряжения на заряд, протекающий по проводнику. Работа, совершаемая для перемещения электрического заряда в электрическом поле.
A – работа электрического тока, [Дж]
U – напряжение на концах участка, [В]
q – заряд, [Кл]
I – сила тока, [А]
t – время, [c]
Формула электрической мощностиP = A/t
P = UI
P = U2/R
Мощность – работа, выполненная в единицу времени.P – электрическая мощность, [Вт]
A – работа электрического тока, [Дж]
t – время, [c]
U – напряжение на концах участка, [В]
I – сила тока, [А]
R – сопротивление, [Ом]
Формула закона Джоуля-ЛенцаQ = I2RtЗакон Джоуля-Ленца: при прохождении электрического тока по проводнику количество теплоты, выделяемое в проводнике, прямо пропорционально квадрату тока, сопротивлению проводника и времени, в течение которого электрический ток протекал по проводнику.Q – количество теплоты, [Дж]
I – сила тока, [А];
t – время, [с].
R – сопротивление, [Ом].
Закон отражения светаЛуч падающий, луч отраженный и перпендикуляр, восставленный в точку падения луча, лежат в одной плоскости, при этом угол падения луча равен углу отражения луча.
Закон преломленияsinα/sinγ = n2/n1При увеличении угла падения увеличивается и угол преломления, то есть при угле падения, близком к 90°, преломлённый луч практически исчезает, а вся энергия падающего луча переходит в энергию отражённого.n – показатель преломления одного вещества относительно другого
Формула вычисления абсолютного показателя преломления веществаn = c/vАбсолютный показатель преломления вещества – величина, равная отношению скорости света в вакууме к скорости света в данной среде.n – абсолютный показатель преломления вещества
c – скорость света в вакууме, [м/с]
v – скорость света в данной среде, [м/с]
Закон Снеллиусаsinα/sinγ = v1/v2 = nЗакон Снеллиуса (закон преломления света): отношение синуса угла падения к синусу угла преломления есть величина постоянная.n – показатель преломления одного вещества относительно другого
v – скорость света в данной среде, [м/с]
Показатель преломления средыsinα/sinγ = nОтношение синуса угла падения к синусу угла преломления есть величина постоянная.n – показатель преломления среды
Формула оптической силы линзыD = 1/FОптическая сила линзы – способность линзы преломлять лучи.D – оптическая сила линзы, [дптр]
F – фокусное расстояние линзы, [м]
Формула тонкой линзы1/F = 1/d + 1/fF – фокусное расстояние линзы, [м]
d – расстояние от предмета до линзы, [м]
f – расстояние от линзы до изображения, [м]
СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА
Массовое числоM = Z + NM – массовое число
Z – число протонов (электронов), зарядовое число
N – число нейтронов
Формула массы ядраМя = МА – ZmeMя – масса ядра, [кг]
МА – масса изотопа , [кг]
me – масса электрона, [кг]
Формула дефекта масс∆m = Zmp+ Nmn – MЯДефект масс – разность между суммой масс покоя нуклонов, составляющих ядро данного нуклида, и массой покоя атомного ядра этого нуклида.∆m – дефект масс, [кг]
mp – масса протона, [кг]
mn – масса нейтрона, [кг]
Формула энергии связиЕсвязи = ∆m c2Энергия связи ядра – минимальная энергия, необходимая для того, чтобы разделить ядро на составляющие его нуклоны (протоны и нейтроны).Есвязи – энергия связи, [Дж]
m – масса, [кг]
с = 3·108м/с – скорость света
Альфа распадM/Z * X → 4/2 * α + M/Z — 4/2 * Y

Конспект урока по физике в 9 классе. «Материальная точка.Система отсчета»

Муниципальное общеобразовательное учреждение

«Разуменская средняя общеобразовательная школа №2»

Белгородского района Белгордской области

Конспект урока по физике
в 9 классе

«Материальная точка. Система отсчета.»

подготовила

учитель математики и физики

Елсукова Ольга Андреевна

г. Белгород

2013

Тема: Законы взаимодействия и движения тел.

Тема урока: Материальная точка. Система отсчета.

Форма учебного занятия: урок

Тип: I+II (урок изучения знаний и способов деятельности)

Место урока в разделе: 1

Цели и задачи:

• обеспечить восприятие, осмысление и первичное запоминание учащимися понятий материальная точка, поступательное движение, система отсчета;

• организовать деятельность учащихся по воспроизведению изученного материала;

• обобщить знания о понятии «материальная точка»;

• проверить применение на практике изученного материала;

• развивать познавательную самостоятельность и творческие способности учащихся;

• воспитывать навыки творческого усвоения и применения знаний;

• развивать коммуникативные способности учащихся;

• развивать устную речь учащихся;

Оснащение урока: доска, мел, учебник.

Ход урока:

  1. Организация начала учебного занятия:

Поприветствовать учащихся;

Проверить санитарно- гигиеническое состояние класса (проветрен ли класс, вымыта доска, наличие мела), если есть не совпадения с санитарно-гигиеническими нормами попросить учеников их исправить вместе с учителем.

Познакомится с учащимися, отметить отсутствующих на уроке;

  1. Подготовка к активной деятельности учащихся:

Сегодня на уроке нам предстоит вернуться к изучению механических явлений. В 7 классе вы уже сталкивались с механическими явлениями и перед тем как приступить к изучению нового материала, давайте вспомним:

— Что такое механическое движение?

Механическим движением – называется изменение положение тела в пространстве с течением времени.

— Что такое равномерное механическое движение?

Равномерное механическое движение – это движение с постоянной скоростью.

— Что такое скорость?

Скорость – это физическая величина, которая характеризует быстроту перемещения тела, численно равная отношению перемещения за малый промежуток времени к величине этого промежутка.

— Что такое средняя скорость?

Средняя скорость— это отношение всего пройденного пути ко всему времени.

— Как определить скорость если мы знаем расстояние и время?

В 7 классе вы решали достаточно простые задачи на нахождение пути, времени или скорости движения. В этом году мы более подробно рассмотрим, какие виды механического движения существуют, как описать механическое движение любого вида, что делать, если скорость на протяжении движения меняется и т. д.

Уже сегодня мы с вами познакомимся с основными понятиями, которые помогают описать как количественно, так и качественно механическое движение. Эти понятия являются очень удобными инструментами при рассмотрении любого вида механического движения.

  1. Изучение нового материала:

В окружающем нас мире всё находится в непрерывном движении. Что же понимается под словом «Движение»?

Движение – любое изменение, происходящее в окружающем мире.

Наиболее простым видом движения является уже известное нам механическое движение.

При решении любых задач, касающихся механического движения, необходимо уметь описывать это движение. А это значит, что нужно определить: траекторию движения; скорость движения; путь пройденный телом; положение тела в пространстве в любой момент времени др.

Например, на учениях в РА чтобы запустить снаряд, необходимо знать траекторию полета, на какое расстояние упадет.

Из курса математики нам известно, что положение точки в пространстве задаётся с помощью системы координат. Допустим нам нужно описать положение не точки, а всего тела, которое как мы знаем, состоит из множества точек, а каждая точка имеет свой набор координат.

При описании движения тела, которое имеет размеры, возникают и другие вопросы. Например, как описать движение тела, если при движении тело ещё и вращается вокруг собственной оси. В подобном случае помимо собственной координаты, каждая точка данного тела обладает собственным направлением движения и собственным модулем скорости.

В качестве примера можно привести любую из планет. При вращении планеты противоположные точки на поверхности имеют противоположное направление движения. Причём чем ближе к центру планеты, тем меньше скорость у точек.

Как тогда быть? Как описать движение тела, которое имеет размер?

Для этого можно воспользоваться понятием, которое подразумевает, что размер тела как бы пропадает, а масса тела остаётся. Такое понятие называется материальной точкой.

Записываем определение:

Материальной точкой называется тело, размерами которого в условиях решаемой задачи можно пренебречь.

Материальных точек в природе не существует. Материальная точка – это модель физического тела. С помощью материальной точки решается достаточно большое количество задач. Но применять замену тела на материальную точку не всегда можно.

Если в условиях решаемой задачи размер тела не оказывает особого влияния на движение, тогда можно такую замену произвести. Но если размер тела начинает влиять на движение тела, то замена невозможна.

Например, футбольный мяч. Если он летает и быстро перемещается по футбольному полю, то он материальная точка, а если лежит на прилавки спортивного магазина, то это тело не является материальной точкой. Самолет летит в небе – материальная точка, приземлился – его размерами пренебречь уже нельзя.

Иногда можно принимать за материальную точку тела, размеры которых соизмеримы. Например, человек поднимается на эскалаторе. Он просто стоит, но каждая его точка движется в том же направление и с той же скоростью, что и человек.

Такое движение называется поступательным. Запишем определение.

Поступательное движениеэто движение тела, при котором все его точки движутся одинаково. Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Но с помощью одной материальной точки мы не сможем описать движение тела. Поэтому введем понятие системы отсчёта.

Любая система отсчёта состоит из трёх элементов:

1) Из самого определения механического движения вытекает первый элемент любой системы отсчёта. «Движение тела относительно других тел». Ключевая фраза – относительно других тел. Тело отсчёта – это тело, относительно которого рассматривается движение

2) Опять же из определения механического движения следует второй элемент системы отсчёта. Ключевая фраза – с течением времени. Это значит, что для описания движения нам необходимо определить время движения от начала в каждой точке траектории. А для отсчёта времени нам нужны часы.

3) А третий элемент мы с вами уже озвучивали в самом начале урока. Для того, чтобы задать положение тела в пространстве нам нужна система координат.

Таким образом, системой отсчёта называется система, которая состоит из тела отсчёта, связанной с ним системой координат и часов.

Системы отсчета Мы с вами будем пользоваться декартовой системой двух видов: одномерной и двухмерной.

  1. Проверка понимание и осмысления нового материала, и применение нового материала на практике:

  1. Что такое материальная точка?

  2. Когда мы можем применять для тела определение материальной точки?

  3. Что такое система отсчета?

  4. Какое движение называется поступательным?

  1. Проверка понимания, осмысления и контроля: упр. 1 задача 2

  1. Подведение итогов: проговорить то, что не сказали учащиеся.

  1. Домашнее задание§ 1 – вопросы в конце параграфа , упр. 1 №3,4 письменно. Основные определения выучить.

Список использованной литературы

1. Перышкин А.В., Гутник Е.М. Физика. 9 кл.:учебник для общеобразовательных учреждений – 17-е изд., стереотип. – М. – Дрофа, 2012 – 300, [4] с., ил.; 1л. цв.вкл.

2. Елсукова О.А., Некрасова Е.С. Учебно-методическая разработка по дисциплине «Естествознание. Физика»,2012.


Использованные материалы и Интернет-ресурсы

  1. http://rpp.nashaucheba.ru/docs/index-26685.html

  2. http://dok.opredelim.com/docs/index-2373.html

CBSE Class 9 Physics Notes

CBSE Class 9 Physics Notes, GeeksforGeeks разработала новый подход к школьному обучению. Физика была одним из важнейших предметов в программе естественных наук для 9-го класса. Это помогает учащимся улучшить свое понимание увлекательных концепций. Понимание того, как движение, сила, работа, звук, гравитация, энергия и мощность взаимодействуют друг с другом и влияют на нашу жизнь. GeeksforGeeks подготовили углубленную предметную теорию, чтобы иметь прочную основу для 9 класса.Физика. Приведенные ниже статьи составлены таким образом, что вы изучаете все по своему учебнику NCERT или справочникам.

Глава 1: Движение

Первая глава учебного плана по физике для 9-го класса — Движение. Движение означает движение. Движение определяется как изменение положения объекта по отношению к его окружению в течение заданного интервала времени. Эта глава формирует основную идею кинематики для студентов, чтобы изучить в дальнейших классах. Таким образом, CBSE класс 9Заметки по физике подробно описывают расстояние и смещение, равномерное и неравномерное движение, скорость, скорость, ускоренное и замедленное движение. Он также объясняет уравнение движения с графическим представлением движения и равномерного кругового движения, как указано ниже:

  • Измерение скорости движения
  • Графики скорости и времени
  • Уравнение движения графическим методом
  • Равномерное круговое движение

Глава 2: Сила и законы движения

Сила и законы движения — это вторая глава программы по физике для 9 класса. Эти заметки объясняют концепцию силы, ее эффекты, уравновешенную и неуравновешенную силу, законы движения и законы движения Ньютона. Кроме того, он предлагает подробное объяснение массы и инерции, импульса и массы, их единиц, а также численные задачи для практики. Примечания также объясняют второй закон движения и третий закон движения. Ниже перечислены статьи о силе и законах движения:

  • Сила — определение, эффекты, типы, проблемы с образцами
  • Сбалансированные и несбалансированные силы
  • Первый закон Ньютона
  • Массовая и инерция
  • Второй закон Ньютона.

Глава 3: Гравитация

Третья глава программы «Физика в естественных науках» для 9 класса — «Гравитация». Гравитация — это универсальная сила притяжения, действующая между всей материей. Важнейшие заметки GeeksforGeeks объясняют универсальный закон тяготения Ньютона, массу, вес и разницу между массой и весом. В примечаниях также представлены решенные численные задачи, которые обсуждаются в статьях, перечисленных ниже:

  • Универсальный закон тяготения Ньютона
  • Закон Кеплера о движении планет
  • Ускорение свободного падения
  • Факторы, влияющие на ускорение свободного падения
  • Масса и вес
  • Выталкивающая сила и причины выталкивающей силы
  • Относительная плотность

Глава 4: Работа и энергия

Работа и энергия — это четвертая глава в учебной программе по физике, поэтому она важна для понимания при решении механики на следующих занятиях. В примечаниях говорится о работе, условии, когда работа должна быть, а когда нет, ее единице, наряду с положительной, отрицательной и нулевой работой. В примечаниях также подробно рассматривается энергия, ее типы, закон сохранения энергии, мощность, коммерческая единица мощности и приводятся численные решения, обсуждаемые в статьях, упомянутых ниже:

  • Работа – определение, формула, виды работы, примеры задач
  • Что такое энергия?
  • Кинетическая энергия.
  • Потенциальная энергия. Звук слышен каждый день из различных источников, таких как люди, птицы, колокола, машины, телевидение, радио и т. Д. В заметках подробно описывается производство и распространение звука, звуковые волны как продольные волны, их характеристики, длина волны, частота, период времени, амплитуда, и скорость. Различные другие концепции скорости звука в различных средах, звукового удара, эха, отражения звука, диапазона слышимости, применения ультразвука, гидролокатора и структуры человеческого уха также объясняются в статье, указанной ниже:

    • Производство и распространение звука
    • Для распространения звука требуется среда
    • Каковы характеристики звуковых волн?
    • Скорость звука
    • Отражение звука
    • Объясните работу и применение SONAR
    • Человеческое ухо

    физика | Определение, типы, темы, важность и факты

    Модель давления газа Бернулли

    См. все носители

    Ключевые люди:
    Райнер Вайс
    Джон Ф. Клаузер
    Кип Торн
    Артур Эшкин
    Джеймс Пиблз
    Похожие темы:
    механика
    оптика
    квантовая механика
    сила тяжести
    космология

    Просмотреть весь связанный контент →

    Популярные вопросы

    Что такое физика?

    Физика — это область науки, изучающая структуру материи и то, как взаимодействуют фундаментальные составляющие Вселенной. Он изучает объекты, начиная от очень маленьких, используя квантовую механику, и заканчивая всей вселенной, используя общую теорию относительности.

    Почему физика работает в единицах СИ?

    Физики и другие ученые используют в своей работе Международную систему единиц (СИ), потому что они хотят использовать систему, принятую учеными всего мира. С 2019 года единицы СИ определяются с точки зрения фундаментальных физических констант, а это означает, что ученые, где бы они ни использовали СИ, могут договориться о единицах, которые они используют для измерения физических явлений.

    Сводка

    Прочтите краткий обзор этой темы

    физика , наука, изучающая структуру материи и взаимодействия между фундаментальными составляющими наблюдаемой Вселенной. В самом широком смысле физика (от греческого физикос ) занимается всеми аспектами природы как на макроскопическом, так и на субмикроскопическом уровнях. Область его изучения охватывает не только поведение объектов под действием заданных сил, но и природу и происхождение гравитационных, электромагнитных и ядерных силовых полей. Его конечной целью является формулировка нескольких всеобъемлющих принципов, которые объединяют и объясняют все такие разрозненные явления.

    Физика — основная физическая наука. До сравнительно недавнего времени физика и натурфилософия взаимозаменяемо обозначали науку, целью которой является открытие и формулировка фундаментальных законов природы. По мере того как современные науки развивались и становились все более специализированными, физика стала обозначать ту часть физической науки, которая не включалась в астрономию, химию, геологию и инженерию. Физика, однако, играет важную роль во всех естественных науках, и во всех таких областях есть разделы, в которых физические законы и измерения получают особое внимание, носящие такие названия, как астрофизика, геофизика, биофизика и даже психофизика. Физику можно, по сути, определить как науку о материи, движении и энергии. Его законы обычно выражаются экономно и точно на языке математики.

    Как эксперимент, наблюдение за явлениями в максимально точно контролируемых условиях, так и теория, формулирование единой концептуальной основы, играют существенную и взаимодополняющую роль в развитии физики. Физические эксперименты приводят к измерениям, которые сравниваются с результатом, предсказанным теорией. Говорят, что теория, которая надежно предсказывает результаты экспериментов, к которым она применима, воплощает закон физики. Однако закон всегда может быть изменен, заменен или ограничен более ограниченной областью, если более поздний эксперимент сделает это необходимым.

    Конечной целью физики является поиск единого набора законов, управляющих материей, движением и энергией на малых (микроскопических) субатомных расстояниях, в человеческом (макроскопическом) масштабе повседневной жизни и на самых больших расстояниях (например, во внегалактическом масштабе). Эта амбициозная цель была достигнута в значительной степени. Хотя полностью единая теория физических явлений еще не создана (и, возможно, никогда не будет), кажется, что удивительно небольшой набор фундаментальных физических законов может объяснить все известные явления. Совокупность физики, разработанная примерно к началу 20-го века и известная как классическая физика, может в значительной степени объяснить движения макроскопических объектов, которые движутся медленно относительно скорости света, а также такие явления, как тепло, звук, электричество, магнетизм и свет. Современные разработки теории относительности и квантовой механики видоизменяют эти законы в той мере, в какой они применимы к более высоким скоростям, очень массивным объектам и к крошечным элементарным составляющим материи, таким как электроны, протоны и нейтроны.

    Викторина «Британника»

    Наука: правда или вымысел?

    Вас увлекает физика? Устали от геологии? С помощью этих вопросов отделите научный факт от вымысла.

    Сфера применения физики

    Традиционно организованные разделы или области классической и современной физики описаны ниже.

    Под механикой обычно понимается изучение движения объектов (или отсутствия их движения) под действием заданных сил. Классическую механику иногда считают разделом прикладной математики. Он состоит из кинематики, описания движения и динамики, изучения действия сил при создании либо движения, либо статического равновесия (последнее составляет науку о статике). Предметы 20-го века квантовой механики, имеющие решающее значение для изучения структуры материи, субатомных частиц, сверхтекучести, сверхпроводимости, нейтронных звезд и других важных явлений, и релятивистской механики, важной, когда скорости приближаются к скорости света, являются формами механики, которые будут будут обсуждаться далее в этом разделе.

    Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту.
    Подписаться сейчас

    В классической механике законы изначально формулируются для точечных частиц, в которых не учитываются размеры, форма и другие внутренние свойства тел. Таким образом, в первом приближении даже такие большие объекты, как Земля и Солнце, рассматриваются как точечные, например, при расчете планетарного орбитального движения. В динамике твердого тела также учитываются протяженность тел и распределение их масс, но предполагается, что они не способны деформироваться. Механика деформируемых твердых тел — это упругость; гидростатика и гидродинамика рассматривают, соответственно, жидкости в состоянии покоя и в движении.

    Три закона движения, сформулированные Исааком Ньютоном, составляют основу классической механики вместе с признанием того, что силы являются направленными величинами (векторами) и соответственно комбинируются. Первый закон, также называемый законом инерции, гласит, что, если на него не действует внешняя сила, покоящийся объект остается в покое или, если он движется, он продолжает двигаться по прямой линии с постоянной скоростью. Следовательно, равномерное движение не требует причины. Соответственно, механика сосредотачивается не на движении как таковом, а на изменении состояния движения объекта, которое является результатом действующей на него результирующей силы. Второй закон Ньютона приравнивает результирующую силу, действующую на объект, к скорости изменения его количества движения, которое является произведением массы тела на его скорость. Третий закон Ньютона, закон действия и противодействия, гласит, что при взаимодействии двух частиц силы, действующие друг на друга, равны по величине и противоположны по направлению. В совокупности эти законы механики в принципе позволяют определить будущие движения множества частиц, если известно их состояние движения в какой-то момент, а также силы, действующие между ними и на них извне. Из этого детерминированного характера законов классической механики в прошлом делались глубокие (и, вероятно, неверные) философские выводы, которые даже применялись к человеческой истории.

    Лежащие на самом базовом уровне физики, законы механики характеризуются определенными свойствами симметрии, примером которых является вышеупомянутая симметрия между силами действия и противодействия. Другие симметрии, такие как инвариантность (т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *